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Abstract of the Dissertation

On Optimal Interconnections

by

Gabriel Robins

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1992

Professor Andrew B. Kahng, Chair

Many applications require algorithms for determining optimal interconnections.

This dissertation centers on new geometric formulations and approximation algo

rithms for optimizing interconnection objectives which are of particular interest

in the design of high-performance VLSI systems. These formulations include

Steiner trees, pathlength-balanced trees, bounded-radius trees, and prescribed-

width paths; we also address the closely related question of efficiently testing

physical interconnections. For most cases, we have new, best-known results, and

in all cases we have empirically demonstrated significant improvements over the

best previous methods.

We give the best-performing rectilinear Steiner tree heuristic to date: the

algorithm has worst-case performance ratio strictly less than 3/2 times optimal,

settling a long-standing open problem. We also give a class of instances which

are pathological for virtually all existing Steiner tree heuristics in the literature,

thus disproving several conjectures and claimed performance bounds.

We propose a matching-based method for pathlength-balanced trees: the con-

xxni



struction yields near-zero average pathlength skew while maintaining small total

tree cost. To address a separate objective, we also offer the first general formu

lation of performance-driven routing, allowing a smooth tradeoff of tree cost for

tree radius. Our algorithm melds the two classical constructions of the mini

mum spanning tree and the shortest paths tree, and has worst-case performance

bounded by a constant times optimal with respect to both tree cost and tree

radius.

Motivated by recent circuit testing applications, we formulate connectivity

testing ais a problem of tree verification via fc-probes. We present linear-time

algorithms which compute a minimum probe set achieving complete coverage of

both edge and node fault classes. Actual testing demands the efficient scheduling

of probe operations: we show that this entails a special type of metric traveling

salesman optimization, and we give provably good heuristics.

Finally, we address a fundamental problem in routing and path planning:

determining a minimum-cost path of prescribed width which connects a given

source-destination pair in an arbitrarily costed region. We give the first known

polynomial-timie algorithm for this problem, and extend our approach to solve a

discrete version of the classical Plateau problem on minimal surfaces.
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CHAPTER 1

Interconnection Problems

Consider the task of connecting together a set of sites. This common problem

arises in many domains, such as when a county government must connect several

towns together via a network of roads. Since there is not necessarily a unique

way to achieve connectivity, we are naturally concerned about the "expense" of

a solution. For the county government, this expense might correspond to the

cost of paving the roads and thus be proportional to the sum of lengths of all

roads constructed. A small instance of this problem is shown in Figure 1.1, where

three towns are located on the vertices of an equilateral triangle. We may achieve

connectivity at a cost of 2 units by using any two edges of the triangle; however,

substantial savings are realized if we add a new site at the center of the triangle

and connect each town directly to this new junction, resulting in a reduced cost

of « 1.732 units. The general problem of determining which new junctions,

or Steiner points, will allow minimization of total interconnection cost is known

as the minimum Steiner tree problem.

Continuing with our scenario, observe that while the county treasurer might

wish to minimize the total road length, another official might promote a com

pletely different objective. For example, public policy considerations would dic

tate that no driving distance between two locations be excessively long (e.g., so

that no person lives more than ten minutes from a hospital), and we therefore



Figure 1.1: An example of three sites with two different routings: the
minimum spanning tree (left), and the optimal Steiner tree (right).

wish to minimize the total length of the roads while at the same time maintaining

reasonable driving distance between any two sites. We can capture these compet

ing objectives with a bounded-radius minimum spanning free formulation: Figure

1.2 contrasts a minimum spanning tree and a bounded-radius tree for the same

point set.

Another connectivity criterion is motivated by issues of synchronization, par

ticularly with respect to the distribution of time-critical information (e.g., news

regarding the results ofa horse race) to a set of sites. In this case, all sites, which

correspond to leaves in a tree topology, must receive a given piece of information

simultaneously. This gives rise to a pathlength-balanced tree problem, where we

want a minimum cost tree over a given set of leaves such that all root-leaf paths

have equal length. An exampleof such a tree is shown in Figure 1.3.

Given an interconnection tree, e.g., for a telephone communication network,

one often wishes to test the tree topology. In the telephone network, we may

verify parts of the topology by attempting calls between selected pairs of sites,

with the assumption that a successful callbetween two nodes of the tree network

checks all edges of the unique path between these nodes (see Figure 1.4). We may



Figure 1.2: An example of contrasting a minimum spanning tree (top)
and a bounded-radius tree (bottom).

/

Figure 1.3: A pathlength-balanced tree: all pathlengths from the root
(hollow dot) to the leaves are equal.

immediately ask for the minimum number of phone calls needed to completely

test a given interconnection tree in this manner. Next, if only a single pair of

agents must make these calls, we would naturally seek to minimize the totaltravel



time (or expense) needed to accomplish the testing.

Figure 1.4: Testing a tree network: a phone call between A and B tests
the entire A-B path.

Finally, yet another interesting problem of interconnection arises when we

seek an optimal source-destination path which has prescribed minimum width.

For example,if a four-lane road is to be paved through a national forest, we may

wish to minimize the total number of trees felled (Figure 1.5); we may even wish

to cut down small trees in favor of preserving large ones.

In this dissertation we study these "optimal interconnection" problems in

detail, and provide efficient algorithms for the solution of each of these problems.

Our chosen area of application and primary domain of discussion is computer-

aided design (CAD) of very large scale integrated (VLSI) circuits; however, our

algorithms may easily be applied to a number of other domains ranging from

urban planning to the design of communication networks.

The rest of this Chapter is organized as follows. In Section 1.1, we give a brief

overview of our canonical application domain, VLSI circuit routing. Section 1.2

develops the various problem formulations and main results that are treated in



Figure 1.5: An example of an arbitrarily costed region and an optimal
prescribed-width path between two opposite corners.

this dissertation, using the framework of VLSI CAD to ground the discussion.

Subsequent chapters formulate and analyze each of these problems in detail, and

then present algorithms to optimize the relevant objectives.

1.1 VLSI Design and Integrated Circuit Routing

The VLSI design process maps a behavior/function onto silicon [MC80]. Theend

product of this process is a fabricated chip which may contain many millions of

gates within a very small area (e.g., a square centimeter) [PL88]. The primary

application areas of this dissertation are embedded within the physical layout

phase of VLSI design. Physical layout consists of (i) a placement task, where

we map functional modules onto specific areas of the chip, and (ii) a subsequent

routing task, where we connect specified sets of pins together using the free

areas between modules to run wires. For example, the hollow dot in Figure 1.6



may be the output of a logic gate inside its containing module Afi, and we may

want this logic value to be propagated to several gate inputs in other modules,

indicated by black dots in Figure 1.6.

r

Figure 1.6: An example placement ofseveral modules and a routing which
interconnects a set of pins.

At the output of the routing stage, all components have already beenarranged

in the plane, sowe need only ensure electrical connectivity of the prescribed nets.

Global routing refers to the task of assigning each net to a subset of the routing

area based on congestion or topological information, while detailed routing en

tails producing for a single net the actual geometries which realize the required

connections [PL88] [LenQO]. A high-level goal of this dissertation is to propose

efficient algorithms that achieve connectivity topologies possessing various desir

able properties.

Advanced VLSI process technologies admit multiple routing layers, where

to reduce crosstalk and facilitate algorithm design, a preferred-direction routing

methodology is used. With this methodology, physical wiring layers are divided

into pairs, and within each pair horizontal wire segments are preferentially routed



on one layer, and vertical wiring segments are routed on the other layer. A

connection between two wire segments from different layers is called a via.

The rectilinear wiring technology implies that the underlying interconnection

metric is the Manhattan (or Li) norm^, where the distance between a pair of pins

with coordinates {xi,yi) and (0:2,1/2) is defined to be \x\ —S2I + \yi —ViV A seg

ment is an uninterrupted straight horizontal or vertical run of wire; a connection

between two pins will consist of one or more wire segments.

Our treatment of interconnection problems in the context of VLSI will use

the following terminology. We say that a pin or a terminal is a given location

on a chip. A signal net iV is a set of pins, with one pin.5 € iV a designated

source and the remaining pins sinks. A routing is a set of wires that connects

together, i.e., spans, the pins of a net so that a signal generated at the source

will be propagated to all of the sinks.

Sometimes it is convenient to embed the interconnection problem in an un

derlying graph G = {V,E), consisting of a set V of nodes and a set of edges

E C V X V, within which the routing must be constructed. A subgraph of

G is a graph G' = {V, E') such that V C V and E' C E, and E' C V x

v. A path between two nodes x, y € V is a sequence of k edges of the form

(a;,uf,),(i;i,,ui2),...,(u,-fc,j/), where (u.„.,Vi„+i) € £; for all 1 < m < fc - 1. A

graph is connected if there exists a path between each pair of nodes. A graph is

a tree if it is connected, but the removal of any one of its edges will disconnect

it. Since |iV| - 1 edges suffice to span a net containing \N\ pins, any routing will

in practice be a tree.

^More generally, in the Lp norm the distance function is given by A = ^{Axy + {Ay)f;
thus, p = 1, p = 2 and p = 00 respectively define the Manhattan, Euclidean and Chebyshev
norms.



A weighted graph has a non-negative real weight assigned to each of its edges.

The cost of a weighted graph is the sum of the weights of its edges. A shortest path

in G between two nodes x, y € F, denoted by minpathaix, y), is a minimum-cost

path connecting x and y. In a tree T, minpathT{x, y) is simply the unique path

between x and y. For a weighted graph G we use distaix, y) to denote the cost

of minpathG{x,y). The reader is referred to, e.g., [Eve79] for a more detailed

treatment of these basic graph-theoretic concepts.

1.2 Overview of the Dissertation

In this section, we summarize the results of each chapter in the dissertation.

1.2.1 Steiner Trees

VLSI design rules dictate a minimum separation between wires, and therefore

the area that a net occupies on a chip is proportional to the wirelength required

to route it. Moreover, wirelength contributes to signal delay and system power

requirements due to the resistance and capacitance of the interconnect. Thus, we

seek to minimize the tree cost required to achieve connectivity. This is precisely

the minimum Steiner tree problem mentioned above, which for a given point set

P asks for a set S of Steiner points such that the minimumspanning tree (MST)

over PU S has minimum cost (Figure 1.7).

The Steiner tree problem is a basic formulation in combinatorial optimization

and network design; it is also fundamental to global routing and wirelength esti

mation for VLSI layout design, where we are interested in minimum-cost Steiner

trees connecting the pins of signal nets. It is known that the minimum Steiner
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Figure 1.7: An example of a rectilinear Steiner routing of a net. Pins are
shown as hollow dots while Steiner points are depicted as dark squares.

tree problem is NP-complete [GJ77], and numerous heuristics have been pro

posed, as surveyed in [Ric89] and [Win87]. Virtually all previous heuristics for

computing rectilinear Steiner trees begin with a minimum spanning tree topol

ogy and rearrange edges to induce Steiner points. In Chapter 2, we show that

surprisingly, the worst-case performance ratio of such methods is no better than

that of the MST itself (i.e., f) [KR91b] [KR92b].

We therefore propose a new, direct approach which makes a significant depar

ture from such spanning tree based strategies: we iteratively find optimal Steiner

points to be added into the routing. Performance results show a very signifi

cant reduction in the tree cost over the best previous heuristics. In addition, our

method escapes pathological instances for existing approaches [KR90] [KR91a]

[KR92a]. We show that the performance ratio of our method can never be as

bad as |, and is in fact bounded by | on the entire class of "difficult" instances

(which we characterize precisely) where the cost ratio is exactly f. Using

recent results of [BR92] [Zel92] it can be shown that a method very similar to

ours has performance ratio bounded by ^5 thus settling the longstanding open



question of whether there exists a polynomial-time Steiner tree heuristic with

performance ratio smaller than | [Hwa76]. Sophisticated computational geom

etry techniques allow efficient and practical implementation, and we describe a

number of variants and extensions.

1.2.2 Pathlength-Balanced Trees

In a high-performance VLSI design, circuit speed is limited in part by the clock

skew, which is the difference between the longest and shortest arrival times of the

clock signal at the synchronizing components. Thus, clock skew minimization has

become a very important problem in the design of leading-edge VLSI systems, and

has been studied by a number of researchers in recent years [BWM86] [DFW84]

[FK82] [Fis90] [JSK90] [RS89] [Tsa91] [WF83].

In Chapter 3, we study the problem of high-performance clock routing, with

the goal of developing a clockrouting methodology that minimizesskewas well as

tree cost [CKR91a] [CKR91b] [KCR90] [KCR91]. We use a linear approximation

to signal delay in VLSI interconnections, so that the delay along a source-sink

path is proportional to the costof the path. Thus, the minimumclock skew objec

tive leads to a pathlength-balanced tree formulation. Our clock routing solution

is based on the construction of a binary tree by iterated geometric matching. The

pathlength-balanced tree cost is on average within a constant factor of the cost

of an optimal Steiner tree, and in the worst case is bounded by 0{y/n) for n pins

arbitrarily distributed in the unit square.

Our bottom-up construction readily extends to different design styles, and also

admits optimizations compatible with more sophisticated delay models, such as

Elmore delay [Elm48]. We have tested our algorithms on numerous random ex-
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amples and placements of industry benchmark circuits; results are very promising

and suggest that our clock routing scheme yields near-zero average pathlength

skew, while maintaining tree cost competitive with previously known methods.

Recent work by other researchers [BK92a] has established that our bottom-up

matching-derived topologies are more amenable than other solutions to improved

embeddings which further minimize tree cost.

1.2.3 Bounded-Radius Trees

In the design of VLSI systems, a basic observation is that increased signal delay

results in decreased system performance. In particular, signal delay forces a lower

bound on the clock period, and the clock period inversely determines the system

clock speed. To maximize the performance of the design, we clearlymust consider

the resulting circuit performancewhile we construct a routing.

To a first-order approximation, the delay in a circuit is proportional to the

maximum source-sink pathlength. Thus, we would like to avoid long paths in

the routing. On the other hand, it is undesirable if this can be achieved only at

the expense of having to greatly increase the tree cost: more metal mass in the

interconnect implies higher capacitance and resistance parameters, which in turn

yield increased delay. Minimization of tree cost and minimization of the longest

path are conflicting goals.

Motivated by the problem of performance-driven global routing in VLSI,

Chapter 4 proposes an algorithm [CKR90] [CKR91c [CKR92a] [CKR92b] which

in some sense melds the two classical constructions of the minimum spanning tree

and the shortest paths tree. The approach is based on a new bounded-radius min

imum routing tree formulation, and we give an algorithm which simultaneously
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minimizes both tree cost and the longest source-sink path, such that both are

bounded by small constant factors away from optimal. This method is appli

cable in arbitrary weighted graphs, and hinges on the following result: for any

given value of a non-negative parameter e, we can construct a routing tree with

longest interconnection pathlength at most {l + e)-R, and with tree cost at most

(l-h f) times the minimum spanning tree cost, where R is the minimum possible

pathlength between the source and the furthest sink.

For Steiner global routing in arbitrary weighted graphs, we achieve longest

pathlength at most (1 -f- e) •i?, with wiring cost within a factor 2 •(1 -|-of the

optimal Steiner tree cost. We also show that geometry helps in routing: in the

Manhattan plane, the tree cost for Steiner routing improves to | •(1 -|- i) times the

optimal Steiner tree cost, while in the Euclidean plane, the total cost is further

reduced to ^ •(1 + 7) times optimal. Furthermore, our method generalizes to

the case where varying wirelength bounds are prescribed for different source-sink

paths. Extensive simulations confirm the approach over a large set of examples

reflecting several layout styles.

1.2.4 Efficient Connectivity Verification

Once a tree interconnection topology has been determined, it is often crucial that

we verify the correctness of its construction. While this question is common in,

e.g., the network reliability area, our motivating application stems from multi-

chip module (MCM) technology, which has recentlyemerged as a successful way

to increase circuit density without compromising production yields. MCMs elim

inate individual integrated circuit packages by mounting a number of bare die

on a wiring substrate. Since mounting the die onto a substrate containing faulty
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wiring would result in a considerable waste and expense (because a faulty as

sembled unit must be discarded), it is necessary to first test the substrate wiring

prior to mounting. This raises the question of how to efficiently test wiring faults

on a "bare" substrate.

Chapter 5 addresses connectivity verification in MCM substrates. We for

mulate connectivity verification as a problem of tree testing using k-probes, and

present a linear-time algorithm which computes a minimum set of probes achiev

ing complete connectivity verification [KRW91a] [KRW91b] [KRW92]. Since ac

tual testing also involves the scheduling of probe operations, we prove that probe

scheduling is a special type of metric traveling salesman optimization; this af

fords effective heuristics which achieve a probe scheduling cost no worse than

I times optimal. Empirical results demonstrate significant reductions in testing

costs over the best previous methods, and our method generalizes to alternate

probe technologies.

1.2.5 Prescribed-Width Routing

Finally, we examine a problem which arises in applications ranging from printed

circuit board (PCB) routing torobotics and autonomous-vehicle navigation: find

ing an optimal prescribed-width path connecting a given source and destination.

Previous path planning formulations assume that the moving agent (and there

fore the path) is of zero width; this assumption is usually not realistic, as is

apparent when an army has to march over a geographical terrain and requires,

say, a mile-wide path (Figure 1.5).

In our formulation, the region is costed arbitrarily (i.e., each point may have a

different cost associated with it), and our objective isto minimize the total cost of
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the path. For the marchingarmy,areas containingminesor snipers willhave very

high cost, while clear level ground will be assigned low cost. The cost function

can also capture, e.g., incomplete or uncertain knowledge of the environment,

and the minimum-width formulation applies when we seek a certain degree of

error-tolerance in the path. Previously no efficient algorithm was known for this

problem; in Chapter 6 we show how to solve this problem optimally in polynomial

time, based on a transformation to network flow [HKR91] [HKR92a]. We also

extend this approach to higher dimensions,where it can be used to solvea discrete

version of the classical Plateau problem of finding a minimum-area surface which

spans a given closed curve [HKR92b] [HKR92c].

We conclude this chapter by briefly describing the research methodology which

has guided our work. Most problems encountered in VLSI design automation,

including the interconnection formulations which are at the heart of this disser

tation, are computationally intractable [Len90]. Such NP-complete problems are

not likely to be solved efficiently [GJ79], and we therefore turn to heuristic solu

tions (even problems solvable in polynomial time may require efficient heuristics

because of the large scale of real-world instances). An underlying precept in our

work is to prove that our proposed algorithms perform well: typically we might

show that the average-case or worst-case quality of the algorithm output is no

worse than a constant factor times optimal. Because the practicality and rele

vanceof a solution depends on many issues beyondtime and spacecomplexity, we

augment the analytical performance bounds with extensive empirical simulation

of the proposed algorithms using standaxd industry benchmarks. Thisestablishes

the practicality of the method on real layouts which have non-random distribu

tions, large problem sizes, etc. Ideally, we will prove good analytical performance
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bounds and then confirm the bounds by observing reasonable empirical behavior.

Indeed, this has been achieved throughout the body of our results.
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CHAPTER 2

Steiner Trees

2.1 Introduction

The first interconnection objective that we address is that of minimizing the cost

of the connecting topology. This is a fundamental problem in global routing and

wirelength estimation for VLSI circuit layout, where we wish to find a Steiner tree

connecting the pins of a signal net in the Lx or Manhattan plane. The minimum

rectilinear Steiner tree (MRST) problem is as follows:

The MRST Problem: Given a set P of n points in the Li plane, determine a

set S of Steiner points such that the minimum spanning tree (MST) over PU S

has minimum cost.

Figure 2.1 shows an MST and an MRST for the same point set.

1

o—

Figure 2.1: MST (left) and MRST (right) for the same 4-point set.

Several results have greatly influenced the progress of research on the MRST
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problem. First, Hanan showed in 1966 that if one draws horizontal and vertical

gridlines through each of the points in P, there is an MRST whose Steiner points

S are all chosen from among the intersection points (the Steiner candidate set)

in the resulting grid [Han66] (see Figure 2.2).^

M^^aaoaaMM

Figure 2.2: Hanan's theorem: an MRST may be found that uses only
Steinerpoints (right) chosen from the intersection points of the horizontal
and vertical lines drawn through all points of the original set (left).

Second, Garey and Johnson showed that despite this restriction on the so

lution space, the MRST problem is NP-complete [GJ77]. Thus, a number of

heuristics have been proposed, as surveyed recently in [Ric89] [Win87]. As noted

in Chapter 1, a basic goal in attacking intractable problems is to devise prov-

ably good heuristics, typically in the sense of having bounded worst-case error

from optimal. Therefore, a third fundamental result is that of Hwang [Hwa76],

who showed that the rectilinear minimum spanning tree over P is a fairly good

approximation to the MRST, with worst-case performance ratio of |, so that if

costiT) denotes the total cost of a tree T, < §• The result of Hwang

implies that any MST-based strategy which improves upon an initial MST topol

ogy will also have performance ratio of at most |. Thus, a number of Steiner tree

heuristics resemble classic MST construction methods.

^Snyder [Sny90] has recently generalized Hanan's theorem to higher dimensions.
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Examples of this approach include two recent MRST heuristics due to Ho,

Vijayan and Wong [HVW90b] and Hasan, Vijayan, and Wong [HVW90a]. The

first gives a linear-time construction for the optimal rectilinear Steiner tree (RST)

derivable from a given MST, i.e., lying within the union of the bounding boxes

of the MST edges. The second heuristic also begins with an MST topology,

and iteratively adds as many "locally independent" Steiner points as possible.

Because the output of these heuristics will not have greater cost than the MST,

they retain worst-case performance ratio of| by theresult ofHwang [Hwa76]. In

practice, existing MRST heuristics exhibit very similar performance on random

instances (n points chosen from a uniform distribution in the unit square), with

the heuristic Steiner tree cost being on average 7% to 9% smaller than MST

cost [Ric89] [Win87]. A fundamental open problem has been to find a heuristic

method with performance ratio strictly less than |.

The worst-case bound given by Hwang and such average-case bounds as that

given by Steele^ provide compelling justification for.MST-based MRST approxi

mations. However, there are motivations for considering alternative approaches.

In the first part of this chapter we give a class ofexamples which shows that the

I bound is tight for a wide range of MST-based methods [KCR91], i.e., the MST

can be "unimprovable". Thus, it seems unlikely that an MST-based heuristic will

have performance ratio strictly less than |.

moretheoretical, retrospective justificationforMST-based approaches is basedoh asymp-
toticsof subadditive functionals [BHH59] [Ste88] in the Lp plane. Such functional include the
MST cost and the MRST cost. Steele [Ste88] has shown that optimal solutions to random
n-point instances of these problems have expected cost ^y/n, where the constant 0 depends
on both the problem, e.g., MRST versus MST, and the underlying Lp norm. The theory of
subadditive functionals has many implications for VLSI CAD optimization. For example, sev
eral VLSI global routers (e.g., TimberWolfSC [Sec88]) use the semiperimeter of a signal net
bounding box as a computationally efficient MRST approximation. The growth function above
immediately implies that this estimate can be refined by using an 0{y/n) scaling factor, with
negligible added CPU cost.
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Furthermore, although the MST and MRST costs may have "similar" growth

rates, an MST-derived solution is not entirely appropriate to VLSI routing ap

plications. Both the optimal Steiner tree, as well as heuristic MST-based RSTs,

will have a linear expected number of Steiner points [BD86][GP68]; these Steiner

points in some sense correspond to vias. However, in certain board wiring tech

nologies, or for performance and reliability considerations, having many Steiner

points may not be desirable. Ideally, the relative incidence of Steiner points would

be a prescribed routing parameter that is a function of technology, performance,

or estimated layout congestion; unfortunately, this is not a natural concept when

we use an MST-based method.

When we consider the extreme case where extra vias are very expensive, it is

natural to ask the following: if we are allowed to introduce exactly one Steiner

point into a net, where should it beplaced? This is themotivation for the Iterated

1-Steiner heuristic, which repeatedly finds the best possible Steiner point and

adds it to the point set until no further improvement is possible. The purpose

of the second part of this chapter is to introduce the Iterated 1-Steiner method

along with several variants. We show that this new approach has a number of

practical advantages:

• the average performance of the method is significantly better than all pre

vious MST-based methods, yielding an average improvement of 10 to 11 %

over MST cost;

• we can limit the algorithm so that it introduces at most k Steiner points

(e.g., in a layout regime where vias are expensive); and

• there are many useful extensions, including randomized, batched and par-
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allel variants, as well as applications to alternate routing geometries.

In addition, our approach has a number of theoretical advantages:

• the method can be efficiently implemented by applying elegant computa

tional geometry results;

• the performance ratio of the method is never as bad as |; and

• the performance ratio of our method is not greater than | on the entire

class of "difficult" instances for which ~ §' known

methods have performance ratio arbitrarily close to | on these instances.

2.2 Performance Bounds for MST-Based Steiner Tree

Heuristics

Hwang's result [Hwa76], along with efficient methods for computing the MST of

a planar point set, have motivated a number of MRST heuristics which start with

an MST construction and then improve the solution by various methods (e.g.,

overlapping edges to induce Steiner points). Instances of this approach include the

work of Hasan, Vijayan and Wong [HVW90a], Ho, Vijayan and Wong [HVW90b],

Hwang [Hwa79a], Lee, Bose and Hwang [LBH76], and Lee and Sechen [LS90 .

Other heuristics, such as those discussed by Bern [Ber88], Bern and Carvalho

[BD86], Richards [Ric89] and Servit [Ser81], build a Steiner tree by emulating

the classical MST constructions of Kruskal [Kru56] and Prim [Pri57]. As noted

by Richards [Ric89] and in such surveys as those of Hwang [Hwa78] and Winter

[Win87], these methods yield very similar results on random instances, i.e., the

heuristic Steiner tree cost is on average 7-9 % less than the MST cost.
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Since these Steiner tree constructions cannot have greater cost than the min

imum spanning tree, the bound of | proved by Hwang is a trivial upper bound

on the worst-case performance ratio of these heuristics. However, the actual per

formance ratio for many MST-based methods has remained unknown. At times

there has been hope that certain methods might be provably better than the

simple MST approximation (e.g., [Hwa79b]), with the algorithms of Bern [Ber88]

and Ho, Vijayan and Wong [HVW90b] being two more recent examples.

We first show that any Steiner tree heuristic in a very general class C of

MST-based methods will have worst-case performance ratio arbitrarily close to

|, i.e., the same bound as for the MST itself. We then show that many published

heuristics [Ber88] [BD86] [HVW90a] [HVW90b] [Hwa79b] [Ric89] [Ser81] with

previously unknown worst-case behavior fall into the class C, and thus we simul

taneously resolve a number of error bounds. Our construction also points out a

recent incorrect claim in [HVW90b] that the two heuristics of [HVW90b] yield

optimal Steiner trees on a certain class of inputs. Furthermore, our examples

establish a lower bound of f on performance ratios for other heuristics which are

not in the class C, e.g., [Hwa79b] [LBH76] [SLL80]. From these results, it seems

doubtful that the popular MST-based approach will ever afford a worst-case ratio

better than the | bound attained by a simple MST. Finally, our examples gen

eralize to d dimensions, where all of these heuristics have error bound of at least

improving the previously known lower bound of on the performance

ratio [Fou84] [GP68].
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2.2.1 Counterexamples for Two Dimensions

We begin by discussing two common approaches to constructing a heuristic

Steiner tree in the Manhattan plane. We exhibit pathological examples for these

methods and then show that the same instances will force a | performance ratio

for an entire class C of Steiner tree constructions.

The first popular approach to the MRST problem starts with a rectilinear

MST and computes a Steiner tree by "overlapping" edges of the MST as much

as possible, as shown in Figure 2.3.

Figure 2.3: Optimal overlap of MST edges within their bounding boxes.

Clearly, the resulting RST cannot have cost greater than the MST cost. Ageneral

template for this MST-Overlap heuristic is given in Figure 2.4.

MST-Overlap; edge overlap within bounding boxes
Input: A fixed rectilinear MST
Output: A rectilinear Steiner tree
Determine the least-cost Steiner tree which lies completely within

the union of bounding boxes of the MST edges

Figure 2.4: A general template for the MST-Overlap heuristic.

A number of authors have explored this idea, including Hwang [Hwa79a],

Lee, Bose and Hwang [LBH76] and Lee and Sechen [LS90]. Ho, Vijayan and
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Wong [HVW90b] recently gave a linear-time algorithm for computing the optimal

RST derivable in this fashion; their method is thus strictly better than those of

Hwa79a] [LBH76] [LS90]. Several researchers conjectured that the worst-case

performance ratio of the new method in [HVW90b] was less than | and, in fact,

equal to However, the exampleof Figure 2.5 forces a sharp performance bound

of exactly |.

"I
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Figure 2.5: An example where the strict equality = f
holds. On the left is the MRST {cost = 20); any Steiner tree derivedfrom
the MST on the right will have cost = 30.

Note that the authors of [HVW90b] define a separable MST to be one whose

edge bounding boxes do not intersect except at their borders, and their linear-

time algorithm actually finds optimal overlaps for separable initial MSTs (the

MST of Figure 2.5 is not separable). However, even when we insist that the

starting MST be separable, we can still force a performance ratio arbitrarily

close to |, as illustrated in Figure 2.6. Figure 2.6(a) shows a separable MST on

a point set where the strict equality = f holds; Figure 2.6(b) shows

a perturbation of the point set such that the MST is unique; and Figure 2.6(c)

shows the optimal Steiner tree topology for both cases.

Theexample ofFigure 2.6(a) points outamisstatement inreference [HVW90b]
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(p. 192): "Both the algorithms produce the optimum Steiner trees for each mem

ber of the class of point sets whose optimal RST has a cost which is | that of

the cost of the MST." This quoted sentence refers to the so-called S-MST and

L-MST algorithms, which rely on the separable-MST (SMST) construction on

p. 187 of [HVW90b]. It is straightforward to verify that on the point set shown

in Figure 2.6(a), the tie-breaking rules of the S-MST construction in [HVW90b

will force the initial separable MST to be exactly that shown in the figure. Edge-

overlapping improves this only marginally to the solution shown in Figure 2.6(d),

implying a performance ratio arbitrarily close to | even though the optimal RST

indeed has a cost exactly | that of the MST.

Figure2.6 also shows that a "folklore" heuristic and its variants, described in

[Ric89] and ascribed to Clark Thompson by Bern [BerSS] [BD86], has worst-case

performance ratio arbitrarily close to We refer to this second generic type of

construction as the Kruskal-Steiner heuristic, since it is an analog of Kruskal's

MST construction [Kru56]. This is shown in Figure 2.7.

Variants in the literature differ mostly in their definitionsof the "closest pair"

of components, but the example of Figure2.6(b) is immune to these distinctions.

When any variant ofKruskal-Steiner isexecuted on the point setofFigure 2.6(b),

it will start at the leftmost points and alternate between the middle, top, and

bottom rows, adding a single horizontal segment to each in turn. Therefore, the

Steiner tree will consist entirely of straight horizontal line segmentsexcept at the

left end, and its cost will be arbitrarily close to | times optimal. Note that the e

perturbations in Figure 2.6(b) force the alternation between rows and make the

heuristic construction completely deterministic.
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Figure 2.6: An example of a separable MST where is
arbitrarily close to f. For n points, any Steiner tree derivable from the
separable MSTs of (a) or (b) will have cost 2(n - 2), while the MRST
(c) has cost |(n —1), yielding a performance ratio arbitrarily close to |
for large enough n. In (d), we show the best possible RST that can be
produced by any MST-Overlap or Kruskal-Steiner heuristic.

Kruskal-Steiner: a Kruskal-like Steiner tree construction

Input: n isolated components (points of P)
Output: A rectilinear Steiner tree over P
Until one component remains, connect the closest pair of components
Output the single remaining component

Figure 2.7: The Kruskal-Steiner tree construction.
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The MST-Overlap and Kruskal-Steiner heuristics form part of a very general

class C of greedySteiner tree methods. We now define the class C and show that

the example of Figure 2.6 is pathological for the entire class C.

Recall that a Steiner tree is a minimum spanning tree over the union of an

input point set P and an added set of Steiner points S. We define an edge as

any wire connecting two points m PU S. The following terminology is used to

denote progressively more general connection types: (i) a point-point connection

is an edge between two points of P; (ii) a point-edge connection is a wire between

a point of P and an edge, inducing up to one new Steiner point; and (iii) an

edge-edge connection is a wire between two edges, which may induce up to two

new Steiner points.

We say that a greedy algorithm isone that constructs a solution by iteratively

selecting the best among all available alternatives [PS82]. The class C is defined

as shown in Figure 2.8, with all algorithms in C being greedy with respect to

Manhattan edge length.

Heuristic H £ C: greedy Steiner tree construction
Input: n isolated components (points of P)
Output: A rectilinear Steiner tree over P
While there is more than one connected component Do

Select a connection type r € { point-point, point-edge, edge-edge }
Connect the closest pair of components greedily with respect to r
Optionally at any time. Re-route any edge within its bounding box
Optionally at any time. Eliminate any edge overlap

Output the single remaining component

Figure 2.8: The class C of greedy Steiner tree heuristics.
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Theorem 2.1 Any heuristic in the class C will have performance ratio arbitrar

ily close to

Proof: The MST of the point set depicted in Figure 2.6(b) is clearly unique since

all interpoint distances of length < 3 are unique. Even if general connection

types are allowed, all connections in the MST will be simple horizontal point-

point connections except for exactly two connections, one from the top row to

the middle row and one from the middle row to the bottom row. The greedy

routing of every edge but these two is unique since all edges except these two

have degenerate bounding boxes. Note that no improvement is possible by edge

re-routing within these degenerate edge bounding boxes. Therefore, no heuristic

in C can do better thaji the result depicted in Figure 2.6(d). Since the effect of

the optional re-routing ofthe two non-degenerate connections becomes negligible

as the point set grows large, the performance ratio is arbitrarily close to •

We now list a number of published heuristics with previously unknown per

formance ratio, all of which are shown by Theorem 2.1 to have error bound arbi

trarily close to |. We do not reproduce the various descriptions of each algorithm

that we mention here, since it is easy to seefrom the high-level classification that

these algorithms are indeed in C. Algorithms which follow a greedy Kruskal-

type construction satisfy the verbatim definition ofthe class C: these include the

methods of Hwang [Hwa79a] and Lee and Sechen [LS90], in addition to methods

described in Bern [Ber88] [BD86], Richards [Ric89] and Servit [Ser81]. It is also

easy to see that algorithms which start with an initial MST and then overlap rec

tilinear edges within their bounding boxes, such as those of Hasan, Vijayan and

Wong [HVW90a] and Ho, Vijayan and Wong [HVW90b] are members of C, since

using only point-point connections will build an MST, and theoptional re-routing
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is then used to induce edge overlaps. Interestingly, exponential-time methods can

also fall into the class C, e.g., the suboptimal branch-and-bound method of Yang

and Wing [YW72]. Theorem 2.1 implies that all of these methods have the same

worst^case error bound as the simple MST.

Finally, the counterexample of Figure 2.6 also establishes new lower bounds

.arbitrarily close to | for the performance ratios of several heuristics not in C,

such as the three-point connection methods of Hwang [Hwa79b] and Lee, Bose

and Hwang [LBH76], and the Delaunay triangulation-based method of Smith,

Lee and Liebman [SLL80]. This is easy to verify using the point set in Figure

2.6(b): as with the heuristics in C, these latter methods are severely constrained

by the nature of the unique minimum spanning tree.

Recent work by De Souza and Ribiero [SRQQ] constructs an instance similar

to that of Figure 2.6 and also discusses the worst-case performance of rectilinear

Steiner tree heuristics. However, the work of [SR90] is limited to two dimensions,

while Section 2.2.2 below extends our construction to yield new bounds in higher

dimensions. More importantly, the work of De Souza and Ribiero is concerned

solely with several specific algorithms and thus does not establish a general result

such as Theorem 2.1.

2.2.2 Counterexamples for Higher Dimensions

Most rectilinear Steiner tree heuristics, including the MST-Overlap and Kruskal-

Steiner variants, extend to higher dimensions and are of special interest for emerg

ing multi-layer packaging and three-dimensional process technologies. However,

the examples of Figure 2.5 and Figure 2.6 also generalize to d dimensions and

provide new lower bounds on the performance ratio of heuristics in C. In partic-
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ular, the example of Figure 2.6 generalizes to n = {2d —l)k + 1 points for any

given positive integer k: the cost of the optimal Steiner tree is at most

the cost of the (unique, separable) MST is 2{n —1), and the cost of the best

Steiner tree derivable from this MST is 2(n —d), as illustrated in Figure 2.9 for

d = 3. Thus, in d dimensions the performance ratio of a heuristic in class C

will be arbitrarily close to This value improves the lower bound for the

worst-case MST/MRST ratio in higher dimensions from the previously known

value of [Fou84] [GP68].

Figure 2.9: For c? = 3, the MRST (top) has cost |(n-l), while any MRST
derivable from the MST (bottom) has cost 2(n - 3), yielding performance
ratio arbitrarily close to | for n large.

2.3 The Iterated l-Steiner Approach

Given that conventional MST-based methods have performance ratio no better

than the simpleMST approximation, wenow present a very different and effective

Steiner tree heuristic. For a point set P, a \-Steiner point is any point x such that

cost{MST{P (J {x})) is minimized, with cost{MST{P D{x})) < cost{MST{P)).

A 1-Steiner tree is the minimum spanning tree over P U{x}.
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Our approach is to iteratively find l-Steiner points and include them into S.

The cost of the MST over P U S will decrease with each added point, and we

terminate the construction if there is no x such that cost{MST{P U5 U{a:})) <

cost{MST{P U5)). The Iterated 1-Steiner algorithm is thus stated as shown in

Figure 2.11, and Figure 2.10 illustrates the execution of Iterated 1-Steiner on a

4-point example.

Figure 2.10: Execution of Iterated 1-Steiner on a 4-point example.

By the result of Hanan, we can find a 1-Steiner point by constructing a new

MST on n -I-1 points for each element in the Steiner candidate set, then picking

the candidate which results in the shortest MST. Each MST computation can be

performed in 0(n log n) time [PS85], yielding an 0(n^ log n) time bound. Note

that this is the time requiredto find just one 1-Steiner point, and that the Steiner

tree may contain up to n —2 Steiner points [GP68].
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Iterated l-Steiner: Steiner tree construction

Input: A set P of ra points

Output: A rectilinear Steiner tree over P

5 = 0

While |5| < 71 and 3 1-Steiner point x Do 5 = 5 U{x}
Output MST(P US)

Figure 2.11: The Iterated 1-Steiner algorithm.

As it turns out, a new 1-Steiner point may be added in O(n^) time, as de

scribed below. A linear number of Steiner points can thus be found efficiently

with a total of O(n^) effort, and finding heuristic solutions with < k Steiner

points requires O(fcn^) time.

There are nunierous extensions to the Iterated 1-Steiner approach, including

randomized variants and a very useful amortization of the 1-Steiner point com

putation which adds an entire set of "independent" Steiner points in a single

iteration. Before we discuss these and other variants of this iterative construc

tion, we review the O(n^) method for finding a 1-Steiner point and analyze the

performance ratio of the Iterated l-Steiner approach.

2.3.1 Finding 1-Steiner Points Efficiently

Georgakopoulos and Papadimitriou [GP87] give an O(n^) method for computing

a 1-Steiner tree for n points in the Euclidean plane. We use a direct adaptation

of their method for the Manhattan norm. The idea is summarized as follows:

• A point p cannot have two neighbors in the MST which lie in the same

octant of the plane with respect to p. Thus we can fix eight "orientations"

at 45-degree intervals, each of which induces a Voronoi-like partition (the
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oriented Dirichlet cells) of the plane.

• These eight plane partitions can be computed and overlaid into a "coarsest

common partition" within O(n^) time. The O(n^) regions of the coarsest

common partition are isodendral: introducing any point within a given

region will result in a constant MST topology.

• The minimum spanning tree on the n points is constructed, and we perform

preprocessing in O(n^) time such that whenever a new point is added to

the point set, updating the MST to include the new point requires constant

time.

• We then iterate through the O(n^) regions of the overlaid partitions and

determine, in constant time per region, the optimal Steiner point in each

region. Each such point will induce an MST on n + 1 points that can

be computed in constant time using the information obtained from the

preprocessing. Comparing the costs ofthese trees and selecting the smallest

one will give the minimum-cost MST on n -1-1 points. The total time for

all phases is O(n^).

There are at most n iterations, each requiring O(n^) computation, and therefore

the time complexity of the Iterated 1-Steiner method is thus O(n^). Empirical

results given below show that Iterated 1-Steiner significantly outperforms all ex

isting heuristics (see Tables 2.1 and 2.2). The actual number of iterations our

algorithm performs for random point sets is less than ^ on average.^

^There are examples where as many as n—1 iterations are performed. Thus,our method can
generate more Steiner points than would exist in the optimal MRST, although we can easily
enforce the n —2 bound by removing degree-2 and degree-1 Steiner points without increasing
the tree cost.
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In surveying the vast Steiner tree literature, it seems that the closest concep

tual relative of the Iterated 1-Steiner heuristic is a method of Smith and Liebman

SL79][SLL80] which involves a highly ad hoc examination of a linear-size subset

of the candidate Steiner set. Our method seems preferable for several reasons: (i)

performance: the method in [SL79] gives less than 8% average improvement over

MST cost for random point sets and thus seems to fall in with the other methods

in the literature, whileour method gives up to 11% average improvement^; (ii) ef

ficiency. [SL79] gives an 0{n*) method, while the Iterated 1-Steiner algorithm is

O(n^); (iii) simplicity, the algorithm in [SL79] requires several pages to describe

while our method is simply described,

2.3.2 Performance Ratio of Iterated 1-Steiner

Several results can be proved which bound the error of the Iterated 1-Steiner

method. A main result is that the output of Iterated 1-Steiner can never be as

bad as | times optimal. We prove our bound as follows. First, we completely

characterize the class of instances having ~ f' which is a result of

independent interest. We then show that the Iterated 1-Steiner algorithm will

always find a 1-Steiner point on such instances, whereas previous methods may

fail to find any improvement over the MST. Finally, we show that on this class

of "difficult" instances, the Iterated 1-Steiner method actually has performance

bound < significantly better than previous methods.

Lemma 2.2 Any point set P with \P\ < 3 has ^ostiMRST) —I*

Recently, the methodof [CH90] has beenreported to also yield up to 11% average improve
ment over MST cost.
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Proof: For |P| = 2, ZI\mSt) = 1- 1^1 = 3 we have cost{MRST) =
j, where R is the perimeter of the bounding box of P. On the other hand,

we observe that by the pigeonhole principle cost(MST) < |i?. It follows that
cost(MST) _ 4

cosi(MRST) — f —3- •

Definition: A plus is a Steiner tree over four points having coordinates of the

form {(x - r,i/),(x + r,i/),(x,y - r),(x,y + r)}; a plus has exzictly one Steiner

point at (a;,y), the midpointof the plus.

Lemma 2.3 A plus is the only configuration of four points that achieves a ratio

Zat(MRST) ''/exactly I using exactly one Steiner point.

Proof: If a 4-point configuration has exactly one Steiner point in its MRST,

its topology is the unique one depicted in Figure 5a of [Hwa76] (i.e., that of a

plus), and thus the point set must have coordinates ofform P = {(x —̂ i, y), (x+

^2, y)-, {x, y-vi), (x,y+ V2)}. Again, let R be the perimeterof the bounding box

of P. The MRST for P has cost exactly equal to while the MST has cost at

most R- \R since we can obtain a spanning tree by deleting the largest of the

four edges which make up the bounding box. This implies that —2

with equality holding only when the largest edge around the bounding box is not

greater than \R, i.e., when all four edges around the bounding box are of equal

length. Therefore, hi = h2 and Vi = V2- We write h = hx = h^ and v = vx= V'i,

and assume without loss of generality that h < v. We now have

cost{MST) _2{v + h) + 2h _h_ ^ 3
cost{MRST) ~ 2{v + h) . v + h- 2

with equality holding when h = v, implying that the configuration is indeed a

plus. •
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Definition: A union of pluses is a Steiner tree with k Steiner points over a point

set P of size |P| = 3/; + 1, where each Steiner point has degree 4 and all four

edges incident to any Steiner point are of equal length.

Theorem 2.4 Any point set having cost{MRST) ~ f MRST which is a

union of pluses.

Proof: Following the proof of the result in Hwang [Hwa76], note that for any

point set P there is an optimal Steiner tree composed of connected components,

each of which has all of its Steiner points forming a chain. Without loss of

generality, allof the Steiner points on such a chain are collinear, with the possible

exception of the Steiner point at the end of the chain. Using the same upper

bound for MST cost and the exact expression for MRST cost as in [Hwa76], we

ran equate expressions for | •cost{MST) and cost{MRST) for the points of any

chain:

Ji-(i +|-e) =fi-(5 +e) (2-1)
where R is the length of the bounding box of the points in the chain, and 0 is

defined so that R - Q is equal to the sum of the distances from all (except the

last) oftheoriginal points to their adjacent Steiner points in thechain. Equation

2.1 implies that 0 = 0 and thus all but one of the original points have the same

coordinates as their adjacent Steiner points, a contradiction unless there is only

one Steiner point (i.e., the last) in this chain. We already know from Lemma 2.3

that any chain which has only one Steiner point and which exactly achieves the

I ratio must be a plus. It follows that any optimal Steiner tree which exactly

achieves the | ratio must be decomposable into a union of pluses. •
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Theorem 21.4 completely characterizes the point sets for which

o 1. Using this, we show the following:ictly equal to |. Using this, we show the following:exa

Theorem 2.5 The performance ratio of Iterated 1-Steiner is always < |.

Proof: If a point set has cosf(MRST) ^ 1 Iterated 1-Steiner does not

find any Steiner points, its performance ratio will be less than |. From Theorem

2.4, weknow that any point set for which ~ have an MRST that

is a union of pluses; in this case Iterated 1-Steiner will certainly select and add

the midpoint of some plus at the first iteration, hence the overall performance

ratio will be strictly less than |. To see this, note that a spanning tree with

cost I •cost{MRST) is found by simply replacing every plus in the MRST by an

arbitrary tree on the four endpoints of the plus, as shown in Figure 2.12.

Figure 2.12: Locally replacing each plus (left) with an MST (right).

Adding the midpoint of the plus as a Steiner point will reduce the cost of con

necting these four endpoints, and the midpoint is indeed one of the candidates

considered during the first iteration of the Iterated 1-Steiner algorithm. Even if

there are other 1-Steiner candidates within the convex hull of the four points of

the plus, the midpoint trivially gives the greatest possible savings since it achieves

a cost improvement of exactly one-third. •
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Note that existing MST-based methods will have performance ratio arbitrarily

close to I on unions of pluses, as shown by the example of Figure 2.6. In contrast,

we may show the following good performance bound for the Iterated 1-Steiner

method:

Theorem 2.6 The performance ratio of Iterated l-Steiner on instances whose

MRST's are unions ofpluses is always < |.

Proof: When Iterated 1-Steiner selects a midpoint of a plus, at most three

midpoints of other pluses may be excluded from future selection. By the greedy

selection rule of Iterated 1-Steiner, the three midpoints that are possibly excluded

cannot belong to pluses larger than the one selected. Thus if Iterated 1-Steiner

selects a plus that is not in the optimal MRST, the savings will be at least as

great as the savings that would have been realized by selecting the largest of

the (up to three) pluses that are now excluded due to topological constraints, as

shown in Figure 2.13.

--0

Figure 2.13: Each selected 1-Steiner point may exclude at most three
potential 1-Steiner points from future selection; thus at least ^ of the
maximum possible savings is achieved.

Each plus represents a savings of 5 of the MST cost over the endpoints of the

plus, so even if we use simple MST edges to connect the remaining affected
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points to the selected plus, the total heuristic cost is no more than cost{MST) —

I •I •cost(MST) = I •cost{MST). Therefore, the performance ratio of Iterated

1-Steiner is no greater than = |. •

We note that this bound can probably be tightened by more exhaustive case

analysis. Since most nets of practical size have less than six terminals, we now

briefly discuss performance bounds for small nets.

Theorem 2.7 The Iterated l-Steiner heuristic is optimal for < 4 points.

Proof: For three points, there can be at most one Steiner point, and since

Iterated 1-Steiner examines all candidates, it is optimal. For a set of four points,

the MRST can have zero, one or two Steiner points, and our method is trivially

optimal when this number is less than two. When the MRST has two Steiner

points, it must have one of the two topologies shown in Figure 2.14 [Hwa76]. A

simple case analysis shows that our heuristic always selects both Steiner points,

with order of selection irrelevant. •

Figure 2.14: The two possible Steiner tree topologies on 4 points.

In contrast, MST-based methods are generally not optimal even for 4-point

nets, as shown by the example in Figure 2.15. We have found a 9-point example

where Iterated 1-Steiner performs as badly as ^ times optimal (Figure 2.16).
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After considerable effort we have not found any instance for which Iterated 1-

Steiner has performance ratio worse than

1-e

1-e

1-e 1+e

Figure 2.15: A 4-point example where MST-improvement algorithms per
form arbitrarily close to | times optimal (left); in contrast, Iterated
1-Steiner performs optimally on all point sets of size 4 or less (right).

Figure 2.16: A 9-point example where the Iterated 1-Steiner performance
ratio is the optimal MRST (left) has cost 11, while the (possible)
heuristic output (right) has cost 13.

It is encouraging that while 5- or 6-point examples exist which force a per

formance ratio of § for other MRST heuristics in the literature, the worst-case

performance ratio of Iterated 1-Steiner for a 5-point example seems to be only

I (Figure 2.17). In [KR90], we conjectured that the Iterated 1-Steiner method

has a performance ratio uniformly bounded away from i.e., there exists a pos

itive constant c such that Iterated 1-Steiner will never have performance ratio

greater than | —c on any instance. Indeed, using recent results [BR92] [Zel92]
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it can be shown that a method very similar to ours (essentially the Batched 1-

Steiner described below) has performance ratio bounded by y, thus settling the

longstanding open question of whether there exists a polynomial-time rectilinear

Steiner tree heuristic with performance ratio smaller than | [Hwa76].

Figure 2.17: A 5-point example where the Iterated 1-Steiner performance
ratio is |. The optimal MRST (left) has cost 6, while the (possible)
heuristic output (right) has cost 7.

2.4 Iterated 1-Steiner Variants

In this section we describe severaJ variants of the Iterated 1-Steiner heuristic.

2.4.1 A Random Variant

An important variant of Iterated 1-Steiner is motivated by observing that it

may not be necessary to find the best candidate Steiner point at each iteration.

In particular, the quality of the final tree may be acceptable even if each step

simply chooses a random improving point. For both this method and the original

heuristic, we may simplify the output by removing Steiner points that become

degree-1 or degree-2 points in subsequent MSTs; by the triangle inequality the

latter can be removed without increasing the MST cost, and the former can

trivially be removed. The advantage of this refinement is that performance is not

affected, while the final layout is guaranteed by topological constraints to have

at most n - 2 Steiner points. The Iterated Random 1-Steiner heuristic is given
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in Figure 2.18.

Iterated Random 1-Steiner: Steiner tree construction

Input: A set P of n points

Output: A rectilinear Steiner tree over P

5 = 0

While 3 1-Steiner points Do

5 = 5 U{ a random improving Steiner point }
Remove points of S with degree < 2 in MST{P US)

Output MST(P US)

Figure 2.18: The Iterated Random l-Steiner algorithm.

Iterated Random 1-Steiner lends itself well to a simple, compact implementa

tion. Empirical performance is on average worse than that of Iterated 1-Steiner,

but remains slightly better than MST-derived solutions for typical instances. It

erated Random 1-Steiner will clearly terminate because the MST cost decreases

monotonically, but the cost can take on any one of an exponential number of

distinct values for certain instances (intuitionsuggests that there is a polynomial

expected upper bound on the number of iterations). A variant which requires

that a point cannot return to the layout afterit has been deleted will have a trivial

O(n^) bound on the number of iterations, and there exists a family of instances

for which Iterated Random 1-Steiner actually produces a quadratic number of

Steiner points.

2.4.2 A Batched Variant

Perhaps the most promising variant amortizes computational expense as follows.

We use the approach of [GP87] to compute within each isodendral region an op

timal 1-Steiner point and its associated MST cost savings; however, instead of
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selectingonly a Steiner candidate which has highest cost savings, weselect a max

imal "independent" set of Steiner points, similar to the approach of [HVW90a]

(Figure 2.19).

Figure 2.19: The Batched 1-Steiner heuristic: selecting an independent
set of of Steiner points in one round.

The criterion for independence is that no candidate Steiner point is allowed to

interfere with (i.e., reduce) the potential MST cost savings ofany othercandidate

in the proposed set of Steiner points to be added. In particular, for a set of points

P, candidate Steiner points x and y are independent (and thus may be added in

the same round) only if

AMST{P, {x}) + AMST{P, {y}) < AMST{P, {x,y})

where AMST{P, S) = max{0, cost(MST{P)) - cost{MST{P U5))), and where

we also insist that AMST{P,{x}) > 0 for x to be a candidate Steiner point. A

round of this method is formally described as follows:

• Compute the MST over P in 0(n log n) timeusing a Voronoi diagram-based

method [PS85]. Also construct the weighted undirected graph G = {P^E)
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where E = {ix,y) | {x,y) is an edge in the Delaunay triangulation over P}

and the cost of each edge in E is the rectilinear distance between its two

endpoints.

• Compute the O(n^) isodendral regions over P, and for each region deter

mine the 0(1) potential neighboring points in the MST as in [GP87]. This

requires a total of O(n^) time.

• Preprocess the O(n^) isodendral regions, now treated as a planar subdivi

sion, so that future planar subdivision searches (i.e., determining the planar

region inwhich a given point lies) may be performed in 0(log n) time[PS85].

This preprocessing requires 0(n^ logn) time, using 0(n^ logn) space.

• For each candidate Steiner point x, compute the cost savings AMST{P, {x})

associated with x. We determine the isodendral region to which x belongs in

O(log n) time via planar subdivision search, and let X be the set of poten

tial MST neighbors of x. For each subset Y C X we add the weighted edge

set {{x,y) I y 6 y} to the graph G. The MST of a planar weighted graph

can be maintained dynamically using O(logn) time per addition/insertion

of a point or edge [EIR90]. Since \X\ = 0(1) and therefore |K| = 0(1), we

can determine in O(logn) time the MST cost savings for each candidate

Steiner point. By Hanan's theorem there are at most candidate Steiner

points, and therefore the time for this entire phase is 0(n^logn).

• Next, sort the O(n^) Hanan candidates in order of decreasing MST cost

savings; this requires 0(n^ log n) timeusing any efficient sorting algorithm.

• Determine a maximal set of independent candidate Steiner points to be

added during this round, by successively adding candidates in order of
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decreasing MST cost savings as long as each added Steiner point is inde

pendent of all Steiner points previously added during this round. In other

words, for an original point set P, a set of already added candidate points

S, and a new candidate x, add a; to 5 if and only if AMST{P, {x}) <

AMST{P US, {x}). Again, MST cost savings due to the addition of dele

tion of a single point can be determined in time O(log n) [EIR90], bringing

the total time for this entire step to 0(n^ logn).

Once a maximal set of independent Steiner points has been determined, it is

inserted into P. We iterate this process with P := PLi S until we reach a round

which fails to add a Steiner point to P. Clearly, the total time required for each

round is O(n^logn). The Batched 1-Steiner algorithm is summarized in Figure

2.20.

Batched l-Steiner: Steiner tree construction

Input: A set P of n points

Output: A rectilinear Steiner tree over P
While 3 a set 5 = {x\AMST(P, {x}) > 0} 5^ 0 Do

For X€ {5 in order of non-increasing AMST} Do
If AMST{P - S,{x}) < AMST{P, {x})Then P = P U{x}

Output MST(P)

Figure 2.20: The Batched 1-Steiner algorithm.

Empirical data indicates that the number of rounds required grows consid

erably more slowly than the number of Steiner points produced. For example,

experimental results on point sets of size 40 show an average number ofabout 17

Steiner points produced (with a maximum of 22), while the average number of

rounds for Batched 1-Steiner is only 2.05 (with a maximum of 4). We conjecture

that the number of rounds grows only sub-linearly with the number of points.

44



2.5 Experimental Results

*

We implemented the Iterated 1-Steiner, the Iterated Random 1-Steiner, and

Batched 1-Steiner heuristics, along with several existing methods, using ANSI

C in both the Sun-4 and Apple Macintosh environments. An example of the

output of Iterated 1-Steiner is shown in Figure 2.21.

a. -O- 1

I

t
Figure 2.21: An example of the output of Iterated l-Steiner on a random
point set (hollow dots). The Steiner points produced by our algorithm are
denoted by dark solid dots.

We have compared the Iterated 1-Steiner and Iterated Random 1-Steiner

heuristics with the standard Corner and Prim methods described below. For

typical values of n, 5000 n-point instances were solved using all methods. The

instances were generated randomly from a uniform distribution in a 1000 x 1000

grid; such instances are statistically indistinguishable from the pin locations of
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actual cell-based layouts, and are the standard testbed for Steiner tree heuristics

[Ric89]. The results are summarized in Tables 2.1 through 2.3, and are depicted

graphically in Figure 2.22.

Corner Prim

Min Ave Max Min Ave Max

\p\ Perf. Perf. Perf. Perf. Perf. Perf.

3 0.00 6.60 24.93 0.00 4.10 24.93

4 0.00 7.85 29.11 0.00 5.71 29.11

5 0.00 8.09 25.07 0.00 6.20 25.07

6 0.00 8.16 27.00 0.00 6.34 22.56

7 0.00 8.12 23.15 0.00 6.45 23.24

8 0.00 8.20 22.57 0.00 6.52 19.97

9 0.37 8.27 20.94 0.00 6.57 19.16

10 0.39 8.20 19.29 0.00 6.45 17.34

12 1.02 8.20 19.27 0.00 6.44 18.40

14 1.93 8.25 18.04 0.12 6.46 16.09

16 2.46 8.24 16.65 0.41 6.48 14.34

18 3.07 8.15 16.12 0.72 6.60 13.24

20 3.26 8.23 14.21 0.84 6.31 11.89

25 3.10 8.37 13.70 1.81 6.47 13.01

30 3.51 8.44 12.70 2.19 6.67 11.20

35 4.98 8.35 13.18 2.85 6.53 11.32

40 4.35 8.50 12.78 2.89 6.68 11.40

Table 2.1: Steiner tree heuristic statistics. These performance figures
denote average percent improvement over MST cost.

2.5.1 Incremental Calculations

These tables also show that even when restricted to a A:-point or fc-round solu

tion, both the Iterated and Batched 1-Steiner algorithms still perform well, with

a large portion of the cost savings (as a percent improvement over the MST cost)

occurring in the first several iterations/rounds. Because of this, it seems reason-
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Iterated l-Steiner

Min Ave Max Min Ave Max

1^1 Perf. Perf. Perf. # SPs # SPs # SPs

3 0.00 6.94 24.93 0 0.66 1

4 0.00 8.73 29.11 0 1.09 3

5 0.00 9.41 25.07 0 1.59 4

6 0.00 9.74 27.00 0 2.03 5

7 0.00 9.99 23.80 0 2.52 5

8 0.31 10.10 25.46 1 2.96 6

9 0.80 10.19 22.57 1 3.42 7

10 0.39 10.15 22.62 1 3.83 7

12 1.50 10.26 19.93 2 4.73 8

14 2.45 10.34 21.77 2 5.60 9

16 2.95 10.43 19.90 3 6.61 10

18 3.61 10.35 17.19 4 7.42 11

20 5.40 10.52 16.25 5 8.35 13

25 4.07 10.64 15.62 6 10.59 15

30 5.00 10.90 15.60 9 12.80 17

35 6.46 10.74 15.32 10 15.04 20

40 5.78 10.93 14.76 12 17.37 22

Table 2.2: Steiner tree heuristic statistics (continued). These performance
figures denote average percent improvement over MST cost. Also given
are statistics regarding the number of Steiner points produced.

ablefor a layout system to useour method for "A:-Steiner point routing"; this will

be accomplished in 0{kn^) time and as noted above, the parameter k can reflect

via costs, routing congestion, performance, and other manufacturability or relia

bility attributes. Similar arguments can be made for a fc-round implementation

of the Batched 1-Steiner variant, which will take 0(fcn^logn) time. For Batched

1-Steiner, the advantages of incremental calculation are dramatic: on 40-point

instances, over 95% of the total improvement occurs in the first round, and over

99% of the improvement occurs in the first two rounds. Results detailing the
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Iterated Random l-Steiner

Min Ave Max Min Ave Max

li'l Perf. Perf. Perf. # SPs # SPs # SPs

3 0.00 6.94 24.93 0 0.66 1

4 0.00 8.70 29.11 0 1.20 3

5 0.00 9.15 25.07 0 1.72 4

6 0.00 9.35 27.00 0 2.23 4

7 0.00 9.42 23.80 0 2.76 5

8 0.00 9.36 25.46 1 3.22 6

9 0.00 9.38 22.14 1 3.73 7

10 3.30 9.24 19.99 1 4.18 7

12 1.26 9.16 19.93 1 5.11 9

14 0.00 8.93 21.73 1 5.98 11

16 0.00 8.85 19.35 1 6.81 11

18 0.09 8.78 15.99 1 7.71 12

20 0.04 8.61 15.98 1 8.50 14

25 0.42 8.21 14.39 1 10.34 17

30 0.16 8.44 15.00 1 12.50 19

35 0.44 7.75 14.82 1 13.56 24

40 0.22 7.90 13.64 1 16.00 26

Table 2.3: Steiner tree heuristic statistics (continued). These performance
figures denote average percent improvement over MST cost. Also given
are statistics regarding the number of Steiner points produced.

nature of the incremental improvements are given in Tables 2.4 and 2.5 below.

2.5.2 On Meta-Heuristics

Fora numberofcombinatorial problems, the following concept ofa meta-heuristic

is natural. Given an instance ofa problem and m different heuristics (algorithms)

Hu H2, ... the meta-heuristic •••,-H^m) will output the best

among the m outputs of heuristics Hi, H2, ... ,Hm. Intuitively, several methods

can trade offin their "areasofexpertise", so while the meta-heuristichas the same
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Figure 2.22: Performance comparison of heuristics; the horizontal axis
represents the number of points per set, while the vertical axis represents
average percent improvement over MST cost.

asymptotic time complexity as its slowest component heuristic, its performance

is often significantly better than that of any individual component heuristic.

To illustrate this phenomenon, we give computational results from implemen

tations of Corner (from "corner-flipping"; this method gives results similar to

the method of [HVW90b]) and Prim, a simple analog of Prim's MST heuristic

construction that is similar to MRST heuristics analyzed in [Ric89]. Table 2.6

shows that Meta(Corner, Prim) gives an average performance of about half a

percent better than Corner alone, although the average performance of Prim is

about two percent worse than that of Corner. In contrast, Meta(Prim, Corner,

Iterated 1-Steiner) gives essentially the same performance as Iterated 1-Steiner

alone, implying that Iterated 1-Steiner strictly dominates the other methods (Ta

ble 2.7). This is a very important aspect: it suggests that the Iterated 1-Steiner
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^ Rounds Improvement per round

Min Ave Max 12 3 4

3 0 0.67 1 7.66 0.00 0.00 0.00

4 0 0.96 2 8.83 0.18 0.00 0.00

5 0 1.07 4 9.30 0.30 0.00 0.00

6 0 1.15 4 9.48 0.38 0.01 0.00

7 0 1.19 5 9.61 0.40 0.01 0.00

8 0 1.24 4 9.75 0.45 0.01 0.00

9 1 1.28 5 9.75 0.47 0.02 0.00

10 1 1.33 6 9.82 0.49 0.02 0.00

12 1 1.40 4 9.79 0.48 0.02 0.00

14 1 1.48 5 9.87 0.53 0.02 0.00

16 1 1.56 4 9.90 0.54 0.02 0.00

18 1 1.61 4 9.85 0.54 0.03 0.00

20 1 1.65 4 9.81 0.58 0,03 0.00

25 1 1.77 5 9.97 0.52 0.03 0.00

30 1 1.93 4 10.14 0.69 0.03 0.01

35 1 2.00 4 10.09 0.58 0.02 0.00

40 1 2.05 4 9.80 0.55 0.04 0.01

Table 2.4: Average improvement percent per round for Batched 1-Steiner.

method will universally give "reasonably good" solutions. For completeness, Ta

ble2.8 gives the empirical performance ofMeta(Prim, Corner, Iterated 1-Steiner,

Iterated Random 1-Steiner).

The meta-heuristic is a general algorithmic phenomenon that applies to nu

merous other problems and subaxeas of computer science. There is very little

evidence in the literature to indicate that this phenomenon, especially for heuris

tics, has received the attention it deserves. Particularly in light of advances

in parallel computation and hardware implementation of algorithms, such com

posite methods should become a highly fertile avenue of research in practical

optimization.
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Improvement per Steiner point

\p\ 1 2 3 4 5 6 7 8 9 10

3 7.66 0.00

4 8.39 0.62 0.00

5

6

7.78

7.06

1.72

2.37

0.10

0.42

0.00

0.03 0.00

7 6.34 2.73 0.82 0.11 0.01 0.00

8 5.90 2.83 1.15 0.30 0.04 0.00

9 5.38 2.87 1.36 0.50 0.12 0.01 0.00

10 5.01 2.83 1.51 0.69 0.24 0.04 0.00

12 4.33 2.71 1.65 0.91 0.46 0.20 0.04 0.00

14 3.87 2.56 1.70 1.07 0.63 0.37 0.17 0.05 0.01 0.00

16 3.44 2.39 1.71 1.17 0.77 0.50 0.31 0.15 0.04 0.01

18 3.16 2.23 1.65 1.20 0.83 0.56 0.39 0.26 0.11 0.03

20 2.88 2.09 1.59 1.22 0.89 0.62 0.43 0.25 0.21 0.12

25 2.45 1.84 1.46 1.18 0.94 0.74 0.57 0.41 0.30 0.24

30 2.17 1.68 1.36 1.12 0.93 0.78 0.62 0.51 0.39 0.31

35 1.82 1.44 1.23 1.07 0.92 0.79 0.67 0.54 0.45 0.38

40 1.74 1.12 0.94 0.81 0.71 0.62 0.56 0.48 0.43 0.37

Table 2.5: Average improvement per point for Batched 1-Steiner.

Corner Prim Meta

\P\ Ave % Ave % Ave %

5 8.022 6.162 8.580

10 8.155 6.455 8.584

15 8.352 6.548 8.613

20 8.240 6.392 8.424

Table 2.6: Meta(Corner,Prim) outperforms its component heuristics. Fig
ures represent average percent improvement over MST cost.

2.6 Remarks and Extensions

In this chapter, we began by showing that conventional (i.e., MST-based) ap

proaches to Steiner tree approximation fail in the sense that their worst-case
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Corner Prim l-Steiner Meta

li'l Ave % Ave % Ave % Ave %

10 8.18 6.54 10.23 10.26

12 8.16 6.30 10.25 10.28

15 8.19 6.54 10.33 10.35

17 8.16 6.43 10.38 10.39

18 8.25 6.48 10.51 10.52

22 8.29 6.49 10.45 10.46

25 8.38 6.53 10.65 10.66

Table 2.7: Iterated 1-Steiner dominates both Corner and Prim. Figures
represent average percent improvement over MST cost.

performance is no better than that of the MST itself. We have therefore de

parted from MST-based methods and proposed a new approach to the minimum

rectilinear Steiner tree problem. Our method yields results that reduce tree cost

by a very significant amount over the best previous methods. Furthermore, it

is the first heuristic which has been shown to have performance ratio less than

in fact, the performance ratio of Iterated 1-Steiner is < | on the entire class

of instances where the ratio cost(MRST) exactly equal to |. The algorithm has
practical asymptotic complexity due to an efficient implementation which uses

methods from computational geometry, and which parallelizes readily. Random

ized and batched variants of the algorithm have also proved successful.

Our approach extends easily to three-dimensional global routing formulations.

In higher dimensions, MST-improvement methods become more complicated due

to additional edge orientations, and thus the benefits of the constructive Iter

ated 1-Steiner strategy are even more apparent. Empirical results for three-

dimensional problem instances seem quite favorable. The Iterated 1-Steiner ap

proach also succeeds in the presence ofnon-orthogonal wiring directions [SW92].
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Meta-Heuristic

Min Ave Max Min Ave Max

\p\ Perf. Perf. Perf. # SPs # SPs # SPs

3 0.00 6.94 24.93 0 0.66 1

4 0.00 8.73 29.11 0 1.09 3

5 0.00 9.45 25.07 0 1.60 4

6 0.00 9.80 27.00 0 2.07 5

7 0.00 10.07 23.80 0 2.57 5

8 0.31 10.19 25.46 1 3.02 6

9 0.80 10.28 22.57 1 3.49 7

10 0.39 10.25 22.62 1 3.94 7

12 1.50 10.35 19.93 2 4.86 9

14 2.45 10.42 21.77 3 5.76 10

16 3.01 10.51 19.90 3 6.78 11

18 4.09 10.43 17.19 4 7.63 11

20 5.40 10.60 16.25 5 8.58 14

25 4.07 10.67 15.62 6 10.83 16

30 5.00 10.90 15.60 10 13.11 18

35 6.46 10.78 15.32 12 15.31 22

40 5.78 10.97 14.76 12 17.78 26

Table 2.8: The empirical performance of Meta(Prim, Corner, Iterated
1-Steiner, Iterated Random 1-Steiner). These performancefigures denote
average percent improvement over MST cost.

There exists an infinite family of higher-dimensional point sets (Figure2.9) for

which our Iterated 1-Steiner scheme performs optimally yet all other .MST-based

heuristics can perform as badly as times optimal in d dimensions, which is

no better than the MST cost for the same point sets. Furthermore, Theorem 2.6

can be generalized to arbitrary dimension d, where the performance of Iterated

1-Steiner would be no worse than ^^0^, e.g., ioi d= 3we obtain worst-case
bound of H for "difficult" point sets which have an MRST that is a union of

"pluses".
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We have conjectured [KR90] [KR92a] [KR92b] that is not only a lower

bound, but also a general upper bound for the worst-case performance ratio in d

dimensions of any MRST heuristic in C, i.e.,

costjMST) ^ 2d-l
cost{MRST) ~ d

We also believe that is the higher-dimensional analogue of Hwang's values of

I in two dimensions. Two additional avenues for future research are: (i) the con

cept of a meta-heuristic introduced above, which may be effective in addressing

other optimizations, and (ii) deriving even tighter bounds for the performance

ratio of the Iterated 1-Steiner method.

54



CHAPTER 3

Pathlength-Balanced Trees

3.1 Introduction

A second interconnection objective arises due to synchronization considerations,

i.e., the interconnection topology should allow signals to arrive at their destina

tions simultaneously. Our motivating application is clock tree synthesis for large,

high-performance VLSI designs. In a synchronous VLSI design, limitations on

circuit speed are determined by two factors: (i) the delay on the longest path

through combinational logic, and (ii) the clock skew among the synchronizing

components, where skew is defined to be the maximum difference between arrival

times of the clocking signal at any pair of destinations. With advances in VLSI

fabrication technology, the switching speed of com^binational logic has increased

dramatically. Thus, the clock skew induced by non-symmetric clock distribution

has become a more significant limitation on circuit performance.

Clock skew minimization has been studied by a number of researchers in recent

years. For example, H-tree constructions have been used extensively for clock

routing in regular systolic arrays [BWM86] [DFW84] [FK82] [WF83]. Although

the H-tree structure can significantly reduce clock skew, it is applicable only

when all of the synchronizing components are identical in size and are placed in

a symmetric array. Ramanathan and Shin [RS89] proposed a clock distribution
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scheme for building-block design where all blocks are organized in a hierarchical

structure. They assume that all clock entry points are known at each level of the

hierarchy and, moreover, that the number of blocks at each level is small since

an exhaustive search algorithm is used to enumerate all possible routes.

Burkis [Bur91] and Boon et al. [BBB89] have proposed hierarchical clock tree

synthesis approaches involving geometric clustering and buffer optimization at

each level. More powerful clock tree resynthesis or reassignment methods were

used by Fishburn [Fis90] and Edahiro [EdaQO] to minimize the clock period while

avoiding hazards or race conditions; Fishburn employed a mathematical program

mingformulation, while Edahiro used a clustering-based heuristic augmented by

techniques from computational geometry. All of theseniethods are highly limited

in their application, either to smallproblem sizes by their algorithmic complexity

and reliance on strong hierarchical clustering [EdaQO] [Fis90] [BBB89] [Bur91]

[RS89], or by their inability to even construct an actual clock routing topology.

In contrast, we are interested in clock tree synthesis for "flat" problem instances

with many synchronizing elements, as will arise in large standard-cell, sea-of-

gates, and multi-chip module designs.

For designs with many small cells, the H-tree approach cannot be used since

synchronizing components may be of different sizes and may be in arbitrary

locations in the layout. Thus, Jackson, Srinivasan and Kuh [JSK90] proposed the

"method ofmeans and medians" (MMM) algorithm, which recursively partitions

the set of clock terminals into two equal-cardinality subsets, and then connects

the center of mass of the entire set to the centers of mass of the two subsets.

Although it was shown that the maximum difference in pathlength from the root

to different synchronizing components is bounded by iJi the average case,
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one may easily construct small examples for which the pathlengths between clock

source and clock terminals in their solution may vary by as much as half the chip

diameter [KCR91]. In some sense, this reflects an inherent weakness of the top-

down approach, which is that it can commit to an unfortunate topology very

early in the construction.

In this chapter, we consider the problem of high-performance clock routing via

pathlength-balaaced tree constructions, with the goal of minimizing skew while

incurring little added wiring expense. We first cast the problem in a geometric

setting, reflecting cell-based design methodologies such as standard-cell or gate

array. We then extend our method to general cellor building-block layouts, where

the wiring is restricted to specific channels so that an underlying distance graph

is induced. We present a basic algorithm and several variants, which minimize

skew by constructing a tree that is balanced with respect to root-leaf pathlengths.

The approach is based on geometric matching: we start with a set of trees, each

containing a single terminal of the clock signal net, and at each level of the

clock tree topology we combine the trees into bigger trees using the edges of an

optimal geometric matching. The end result is a binary tree whose leaves are the

terminals in the clock signal net and whose root is the clock entry point. Our

method is particularly suitable for designs which employ a single large buffer to

drive the clock tree, and we note that there are a number of reasons for such a

design choice, as discussed in [BWM86].

Our algorithm always yields perfect pathlength-balanced trees for inputs of

four or less terminals. Extensive experimental results indicate that even for large

clock signal nets, the pathlength skew of the tree constructed by our algorithm

remains essentially zero. This performance is obtained without undue sacrifice of
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tree cost; we prove that on average our tree cost is within a constant factor of

the optimal Steiner tree cost. Furthermore, our worst-cfise tree cost is bounded

by 0{^/n) for n terminals in the unit square, which is the same bound as for the

worst-case optimal Steiner tree cost.

Since the work in [JSK90] addresses minimum-skew clock routing for cell-

based designs, we used an implementation of the MMM algorithm, similar to

that of [JSK90] for comparison purposes. For uniformly distributed nets of up

to 1024 terminals in the unit square, our method produces trees with near-zero

pathlength skew both in the average case and worst case, with tree cost signifi

cantly lower than that produced by MMM. In addition, routing results for layouts

of the MCNC Primaryl and Primary2 benchmarks are significantly better than

those reported in [JSK90]; we obtain perfectly balanced root-leaf pathlengths in

the tree using several percent less tree cost than MMM. Actual clock skews for

our benchmark routings, as determined by using the circuit simulation package

HSPICE, are very reasonable.

Extension ofour method to generalcelldesign is accomplished by generalizing

the notion of matching to weighted graphs. Thus, our algorithm produces a

routing tree that is embedded in the channel intersection graph [DAK85] of an

arbitrary building-block layout. The trees produced byour method attain almost

zero pathlength skew with only modest tree cost penalty. Experimental results

show that the pathlength skew of our routing tree is less than 2% of that of a

heuristic Steiner tree. This is achieved on average with less than 50% increase

in tree cost over the Steiner tree. Simulation results using HSPICE confirm that

the actual clock skew of our tree is also considerably less than that of the Steiner

tree.
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The remainder of this chapter is organized as follows. Section 3.2 defines a

number of basic concepts and gives a preciseformulation of the pathlength skew

minimization problem. In Section 3.3 we present the clock routing algorithm in

detail for cell-based designs; Section 3.4 extends the algorithm to general cell

layouts. Experimental results of our algorithm and comparisons with previous

methods are presented in Section 3.5, and Section 3.6 concludes with possible

extensions of the method.

3.2 Preliminaries

A synchronous VLSI circuit consists of two types of elements, synchronizing ele

ments (such as registers) and combinational logic gates (such as NAND gates and

NOR gates). The synchronizing elements are connected to one or more system-

wide clock signals. Every closed path in a synchronous circuit contains at least

one synchronizing element (Figure 3.1). The speed of a synchronous circuit is

chiefly determined by the clock signal period(s). It is well known [Bak90] [JSK90]

that the clock period Cp of each clock signal net must satisfy the inequality:

Cp > + takew + ^au + ^da

where td is the delay on the longest path through combinational logic, tgkew is

the clock skew, is the set-up timeof the synchronizing elements, and tds is the

propagation delay within the synchronizing elements.

The term td itself can be further decomposed into td = tdjnterconnect + td^gatea

where td_interconnect IS the delay associated with the interconnect of the longest

path through combinational logic, and td_gatea is the delay through the combi

national logic gates on this path. As VLSI feature sizes become smaller, the
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Figure 3.1: A typical combinational circuit.

terms ta^-, tda, and U_gates all decrease significantly. Therefore, as noted above,

td.interconnect and tskew become increasingly dominant in determining circuit per

formance. It was noted in [Bak90] that tskew may account for 10% or more of the

system cycle time. The objective of this chapter is to minimize t^kew, while we

address the problem of minimizing Ujnterconnect in Chapter 4.

Given a routing solution for a clock signal net, the clock skew is defined to

be the maximum difference among the delays from the clock entry point (CEP)

to synchronizing elements in the net. The notion of clock skew is well defined

only in the context of a method for evaluating signal delays. The delay from the

source to any terminal depends on the wirelength in the source-terminal path, the

RC constants of the wire segments in the routing, and the underlying connection

topology of the clock tree.^ Using equations such as those of Rubinstein et al.

[RPH83], one can achieve tight upper and lower bounds on delay ina distributed

RC tree model of the clock net. However, in practice it is appropriate to apply one

of two simpler RC delay approximations, either the linear model or the Elmore

^The global routing phase oflayout will typically consider the clock andpower/ground nets
for preferential assignment to (dedicated) routing layers. We assume that the interconnect
delay parameters are thesame onall metal routing layers, and we ignore viaresistances. Thus,
wirelength becomes a valid measure of the RC parameters of interconnections.
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model, both of which are easier to compute and optimizeduring clock tree design.

The following treatment of these models is due to [BK92a] [BK92b].

3.2.1 Linear Delay

The linear delay Ild along a path in a routing tree is proportional to the length

of the path and is independent of the rest of the connection topology. Thus, the

delay between two terminals u and to in a net is given by:

tLD{u,w)= le|
e^path(u^w)

While less accurate than the distributed RC tree delay formulas of Rubinstein

et al [RPH83], the linear delay model has been effectively used in clock tree syn

thesis [KCR91] [RS89]. In general, use of the linear approximation is reasonable

with older application-specific IC (ASIC) technologies, which have larger mask

geometries and slower packages. Tsay [Tsa91] notes that thelinear delay model is

also appropriate for emerging optical and wave interconnect technologies. In ad

dition, we observe that linear delay applies to hybrid multi-chip module packages,

e.g., with thick-film substrate interconnects that have relatively large geometries

[Sha91].

3.2.2 Elmore Delay

With smaller device dimensions and higher ASIC system speeds, a distributed

RC tree model for signal delay in clock nets is often required to derive accurate

timing information. Typically, we use the first-order moment of the impulse

response, also known as the Elmore delay [CK90] [Tsa91]. The Elmore delay

model is developed as follows. Let p and k respectively denote the resistance
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and capacitance per unit length of interconnect, so that the resistance and

capacitance of an edge e are given by p • |e| and « • |e|, respectively. For each

terminal t in the tree T, there is a loading capacitance Kt which is the input

capacitance of the functional unit driven hyt.

We let Tv denote the subtree of T rooted at u, and let denote the node

capacitance of v.^ The tree capacitance of r„ is denoted by and equals the sum

of capacitances in Ty. According to [Elm48] [RPH83] [Sak83], the Elmore delay

tED{s,t) can be calculated by the following formula (see [Tsa91] for a discussion

of underlying circuit models):
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Elmore delay is additive: if u is a vertex on the u-w path, then tED{u;w) =

tEoiu, v) + isviv, uj).

3.2.3 Problem Formulation

The discussion in this chapter will assume the lineax delay model, so that clock

skew is given by the maximum difference in wirelength from the CEP to syn

chronizing elements in the clock signal net; this allows geometric formulations

compatible with the cell-based design regime. However, it should be noted that

our algorithm may be easily extended to incorporate the Elmore delay model

simply by a more judicious selection of "balance points", as will be discussed be

low. We represent a clock routing solution by a rooted (Steiner) tree whose root

is the CEP and whose leaves are synchronizing elements in the clock signal net.

Recall that the cost ofan edge in the tree is the Manhattan distance between the

^We assume that «» = 0 for all internal nodes.



two endpoints of the edge, and that the tree cost is the sum of all edge costs in

the tree.

Definition: The pathlength skew of a tree is the maximum difference of the

pathlengths in the tree from the root to any two leaves.

A tree is called a perfect pathlength-balanced tree if its pathlength skew (i.e.,

clock skew under the linear delay model) is zero. It is not difficult to construct

a perfect pathlength-balanced tree if we are allowed to use an arbitrary amount

of wire (right side of Figure 3.2). However, such a construction can lead to a

routing tree with very high cost, implying a large RC constant that may distort

the clock signaldue to longer signal rise ajnd fall times. On the other hand, blindly

minimizing tree cost could result in a tree with very large pathlength skew (left

side of Figure 3.2). Thus, we wish to construct a tree whose pathlength skew is

as small as possible, without incurring a large tree cost penalty (Figure 3.3).

Figure 3.2: Neither the minimum spanning tree (left), nor the shortest
paths tree (right) are necessarily good clock trees.

\

With this in mind, we formulate the clock routing problem as follows:

The Pathlength-Balanced Tree (PBT) Problem: Given a net N and a real

parameter V*, find a minimum-cost tree with pathlength skew < ij}.
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Figure 3.3: A pathlength-balanced tree, having zero skew and reasonably
low tree cost.

The following result is immediate:

Theorem 3.1 The PBT problem is NP-hard.

Proof: Set V* = ooso that the PBT problem"simplifies" to the minimum Steiner

tree problem, which is known to be NP-complete even in the Manhattan plane

[GJ77]. •

Our objective is to give an efficient heuristic for the PBT problem. In particu

lar, for cell-based design methodologies, we wish to construct a clock tree with

pathlength skew as small as possible, and cost as close as possible to that of the

optimal Steiner tree. Note that a zero skew tree can be trivially achieved by

routing n = |iV| separate wires of constant length from the clock source to all

of the target terminals (right side of Figure 3.2), but this can result in tree cost

arbitrarily higher than the Steiner tree cost. Ideally, we would like to obtain a

routing solution in the L x I grid with cost 0{L •y/n) since theoptimal Steiner

tree also has cost 0{L •^/n) in the average case [Ste88] (recall the discussion of

subadditive functional in Chapter 2). In what follows, we will assume that the

circuit layout is in the L x L grid.
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3.3 A Pathlength-Balanced Tree Algorithm for Cell-Based

Design

In developing our pathlength-balanced tree algorithm for cell-based layouts, we

first introduce the notion of a geometric matching:

Definition: Given a net of 2n terminals, a geometric matching consists of n

line segments between the terminals, with no two of the n segments sharing an

endpoint.

Each line segment in the matching defines a matching edge. The cost of a

geometric matching is the sum of the costs of its matching edges. A geometric

matching over a net is optimal if its cost is minimum among all possible match-

ings. An example of an optimal geometric matching over four terminals is shown

in Figure 3.4.

Figure 3.4: An optimal geometric matching over four terminals.

To construct a tree byiterative matching, we begin with a forest of n isolated

terminals (for convenience, assume that n is a power of 2), each of which is

considered to be a tree withCEP equal to the location of the terminal itself. The

optimal geometric matching on these n CEPs yields | segments, each of which
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defines a subtree with two nodes. The optimal CEP for each subtree of two nodes

is the midpoint of the corresponding segment, i.e., so that the clock signal will

have zero skew between the segment endpoints.

In general, the matching operation will pair up the CEPs (roots) of all trees

in the current forest. At each level, we choose the root of each new merged tree

to be the balance point which minimizes pathlength skew to the leaves of its two

subtrees. The balance point is the point p along the "straight" line connecting the

roots of the two subtrees, such that the maximum difference in pathlengths from

p to any two leaves in the combined tree is minimized. Computing the balance

point requires constant time if we know the minimum and maximum root-leaf

pathlengths in each of the two subtrees, and these values can be maintained

incrementally using constant time per each node added to the tree.

At each level of the recursion, we only match half as many nodes as in the

previous level. Thus, after flog n] matching iterations, we obtain the complete

tree topology. In practice, we actually compute optimal maximum-cardinality

matchings, i.e.,if there are2m+l nodes, we find the optimal m-segment matching

and match m + l CEPs at the next level. We call this algorithm CLOCKl (see

Figure 3.5 for an example ofits execution), and use Tclocki to denote its output

tree. Figure 3.6 gives a formal description of CLOCKl.

The following two results show that the cost ofTclocki is indeed reasonable:

(i) cost{TcLOCK\) grows at the same asymptotic rate as the worst-case optimal

Steiner tree cost, and (ii) cost{TcLOCK\) is on average within a constant factor

of the optimal Steiner tree cost.

Theorem 3.2 For a net ofn terminals arbitrarily distributed in the LxL square,

cost{TcLOCKi) = 0{L •^Jn).
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\

Figure 3.5: Example of algorithm CLOCKl running on a set of 16 termi
nals. Solid dots denote terminals, and hollow dots represent the balance
points of the corresponding edges. At each level a geometric matching is
computed on the balance points ofthe previous level. Note that although
edges are depicted as straight lines, they are actually routed rectilinearly.

Proof: For n terminals in the I x I, grid, the worst-case cost of an optimal

matching is 0{L • ^/n) [SRP83]. Since the tree is formed by the edges of a

matching on n terminals, plus the edges ofa matching on ^ terminals, etc., the

tree cost is at most

0{L •\/n) + 0{L • -1- 0{L • -I-... = 0{L •y/n).

•
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CLOCKl: A Pathlength-Balanced Tree Algorithm
for CeU-Based Designs

Input: A net N

Output: A pathlength-balanced tree Tclocki with root CEP

T = 0

P = N

While |P| > 1
M = the edges of the optimal geometric matching over P

P' = 0

For {pi,p2) € M Do
Ti = the subtree of T rooted at pi

T2 = the subtree of T rooted at p2
p = a point lying between pi and p2 on the line

containing pi and p2, such that p minimizes skew

of the tree Ti UT2 U{(p,pi), {P,P2)} rooted at p
P' = P'\J {p}
T = ru {(p,pi),(p,p2)}

P = P' plus a possible unmatched node if |P| is odd

CEP = root of r = single remaining point in P

Output Tclocki = T

Figure 3.6: The matching-based pathlength-balanced tree algorithm for
cell-based design.

This is of the same order as the maximum possible cost of an optimal Steiner

tree on n arbitrarily located terminals [Ste88]. Note that Theorem 3.2 does not

directly relate the tree cost of our construction to the cost of the optimal Steiner

tree; this is addressed by the following result.

Theorem 3.3 For nets randomly chosen from a uniform distribution in the LxL

grid, cost{TcLOCK\) is on average within a constant factor of the optimal Steiner

tree cost.

Proof: The minimum Steiner tree cost for n terminals randomly chosen from a
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uniform distribution in the L x L Manhattan grid grows as /3 • L • y/n for some

constant ^ [Ste88]. The theorem follows from the 0{L • s/n) worst-case bound

on the minimum-cost matching at any level of the construction [SRP83]. •

The balancing operation to determine the CEP of a merged tree is necessary

because the root-leaf pathlength varies between subtrees at a given stage of the

construction. In general, when we merge subtrees Ti and T2 into a higher-level

subtree T, the optimal entry point of T will not necessarily be equidistant from

the entry points of T\ and T2 (this can be observed in the example of Figure

3.5). Intuitively, balancing entails "sliding" the CEP along the "bar of the H".

However, it might not always be possible to obtain perfectly balanced pathlengths

in this manner (see Figure 3.7).

.A.

Figure 3.7: Example offlipping an H as to minimize pathlength skew: the
tree on the left has no zero-skew balance point along the middle segment
of the "H", while the tree on the right does.

We therefore use a further optimization, which we call H-flipping: for each

edge e added to the layout which matches CEPs on edges ei and 62, replace

the "H" formed by the three edges e, d, and ej by the "H" over the same four

terminals which (i) minimizes pathlength skew, and (ii) to break ties, minimizes

tree cost. We now prove that for four terminals it is always possible find an "H"

orientation which achieves zero pathlength skew, and wealso bound the increase

in tree cost caused by H-flipping for nets of size 4. As discussed below, extensive

empirical tests confirm that even for very large nets, the H-flipping refinement
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almost always yields perfect pathlength-balanced trees with essentially no cost

increase.

If a net is of size two, CLOCKl selects the midpoint of the segment connecting

the two terminals as the balance point and this clearly yields a perfect pathlength-

balanced tree. Now we show that for nets of size 4, CLOCKl with the H-flipping

refinement also yields perfect pathlength-balanced trees (a net of size three can

be treated as a net of size 4 in which two terminals coincide).

Let a, b, c and d be the terminals of a net of size 4. Without loss of generality,

assume that ah and cd are the edges in an optimal matching and ab > cd. (For

convenience, we use ab to denote both the segment connecting terminals a and b

and also the length of the segment ab.) Let mi and m2 be the midpoints of ab

and cd, respectively. CLOCKl chooses mi to be the root of the subtree for a and

6, and m2 to be the root of the subtree for c and d. Then, CLOCKl attempts to

find a balance point p on segment mim2 such that

y+pmi =y-fpm2 (3.1)

It is easy to see that if mim2 > we can always choose p satisfying

Equation 3.1. In this case, the pathlengths from p to all four terminals are the

same, so that we have a perfect pathlength-balanced tree. However, if mim^ <

we carry out H-flipping as described earlier, replacing aband cd by ad and

be. We choose the midpoint ni on be to be the root of the subtree for b and c,

and the midpoint n2 on ad to be the root of the subtree for a and d. We then

choose p' on nin2 such that
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f+pS =| +p'n» (3,2)
According to the following lemma, we are guaranteed to find p' on nin2 satisfying

Equation 3.2.

Lemma 3.4 If m\m2 < then niUa > 2 •

Figure 3.8: Using similar triangles to analyze H-flipping skew.

Proof: If we have both m\m2 < and nin2 < ^2^ then

ah —cd be - ad
mim2 + nin2 < 1 ^

therefore

ab + bc _ _ ^ cd +ad—-— > m\m2 + n\n2 -I ^

Let Xbe the midpoint of bd. Using similar triangles and the triangle inequality

(see Figure 3.8), we obtain

ab ^ , .cd
— = xn2 < nin2 + xrii = nin2 + —
2 ^
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and

thus

be ad
— = xm2 S n2im2 + xmi = mim2 + —

ab+ be ^ cd + ad
< m\m2 + nin2 +

2 - ' - • ^ • 2

which is a contradiction to Equation 3.3. Therefore if m\m2 < we must

have nin2 > •

Lemma 3.4 implies that we can always choose the balance point p' on n\n2

after H-flipping. Therefore, CLOCK1 always constructs a perfect pathlength-

balanced tree for a net of up to 4 terminals. The following lemma shows that

when we replace ab and cd by ad and be during H-flipping, the cost increase is

bounded by a constant factor.

Lemma 3.5 If mim2 < then be + ad < 3{ab + ed).

Proof: Let x be the midpoint of bd. Again applying similax triangles and the

triangle inequality (see Figure 3.9), we obtain

be ,, 1
— = xm2 <xd-\- dm2 = xa + —
2 ^

and

thus

ad , o,h
— = xm\ < xb+ bm\ = xo + —
2 ^

hc +ad^^_^a^ (3.4)
2-2

Let y be the intersection of bd and m\m2, so that

ab
by < miy + mib = miy + —
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cd
dy < m2y + m2d = m2j/ + —

ah-\-cd ab —cd ah •'red ,
bd < mim2 + —-— < — 1- —-— = ab (3.5)

Thus, from Equations 3.4 and 3.5 we have

bc + ad ab + cd Z{ab + cd)
< ao H — ^

2

or bc + ad < 3{ab + cd).

Figure 3.9: Using similar triangles to analyze H-flipping cost.

Together, the two previous lemmas imply the following:

Theorem 3.6 It is always possible find an "H" orientation over four terminals

which achieves zero pathlength skew, with at most a constant factor cost increase.

Since our method isbased ongeometric matching, its timecomplexity depends

on that of the matching subroutine. Awell-known algorithm for general weighted

matching requires time O(n^) [Gab76] [Law76]. By taking advantage oftheplanar
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geometry, the algorithmic complexity can be reduced to 0(n^ ®log n) [Vai88].

However, even this lower-complexity method may be inefficient for large problem

instances.

In order to solve problems-of practical interest, and since there is no clear

relationship between the optimality of the niatching and the magnitude of the

pathlength skew of the resulting tree, we may choose to speed up the implemen

tation by using efficient matching heuristics [BP83] [SR83] [Sup90]. Although

most of these methods were designed for the Euclidean plane, they also perform

well in the Manhattan metric, especially if their output is further improved by

uncrossing pairs of intersecting edges in the heuristic matching (in any metric,

this reduces the matching cost by virtue of the triangle inequality; to this end,

note that k intersections of n line segments may be found efficiently in time

O(nlogn + k) [CE92]).

We shall later discuss the empirical behavior of CLOCKl based on three

matching methods which require time 0(n), 0(n log n) and O(nlog^n) respec

tively. Each of these three matching heuristics yields very good solutions. When

performance is critical, an optimal geometric matching algorithm might give an

improvement over our current implementations, but will require correspondingly

greater computational resources.

The basic approach of CLOCKl thus consists of [log n] applications of the

matching algorithm. H-flipping requires constant time per node, and therefore

does not add to the asymptotic time complexity. If the underlying matching

algorithm runs within monotonically non-decreasing time S{n) = n(n), we may

write S{n) = n •T{n) where T(n) = ^ is monotonically non-decreasing, and

hence the total time required by CLOCKl is
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5(n) +5(|) +5(^) +...

=n.T(n) +|.r(|) +^.r(^) +...
<n-Tin) +yTin) + j-T{n) +...

=T(n).(n +| +^+...)
< 2n •r(n) = 25(n) = 0(5(n))

i.e., the time complexity of CLOCKl is asymptotically equal to the time com

plexity of the underlying matching algorithm.

3.4 A Pathlength-Balanced Tree Algorithm for General

Cell Design

The same ideas of bottom-up iterative matching which we developed in the pre

ceding section may be generalized to pathlength-balanced tree construction where

distances are specified as an arbitraxy weighted graph. This corresponds to the

practical application of clock routing in general cell designs, where a circuit is

partitioned into a set of arbitrarily-sized rectangular cells (also referred to as

blocks). Blocks may be of widely varying sizes, and are not necessarily placed

in any regular arrangement. The routing is carried out in the channels between

blocks, which may be represented using a channel intersection graph [DAK85].

For this design style, the approximation of routing cost by geometric distance,

which we used for cell-based design in the previous section, does not apply since

Manhattan distance is no longer a good approximation of the routing cost be

tween two terminals.
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Our goal remains to construct a pathlength-balanced tree which has both

pathlength skew and cost as small as possible, except that routing of tree edges

is now restricted to lie within prescribed routing channels. Recall that given a

graph G with a non-negative cost function on the edges, we let minpathoix, y)

denote the minimum cost path between nodes x and y, and use dista{x,y) to

denote the cost of minpathaix, y). The notion of a matching may be extended

to arbitrary weighted graphs as follows:

Definition: Given a graph G = (V,E) with a non-negative cost function on the

edges, a generalized matching M in G is a set of shortest paths connecting m

mutually disjoint node pairs, i.e., M = {minpathaixijyi), minpathG{x2,y2), •••>

minpathG{xm,ym)}, where the x.'s and j/j's are all distinct.

Ageneralized matching ona set ofnodes AT C V in G is complete ifm = .

The cost of a generalized matching M is the sum of the costs of the shortest
m

paths in the matching, i.e., cost{M) = Y^distG{xi,yi). An optimal complete
«=i

generalized matching on A/^ C V isone with least cost. We can show thefollowing

properties of optimal complete generalized matchings:

Lemma 3.7 Each edge of G belongs to at most one shortest path in an optimal

complete generalized matching on N QV in G.

Proof: Let M be an optimal complete generalized matching on N. Suppose that

edge e appears in distinct shortest paths minpathaixi^yi) and minpathaixj^yj)

in M as shown in Figure 3.10.

It is not difficult to see that

distG{xi, Xj) + distGiyi, yj) < distG{xi, yi) + distG{xj, j/j) - 2 •cost{e)
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\
Figure 3.10: Each edge belongs to at most one shortest path in an optimal
complete generalized matching.

Therefore, we would obtain a complete generalized matching on N with smaller

costby replacing minpathalxi, yi) and minpathaixj.,yj) in M by minpatha{xi,Xj)

and minpathoiyuyj), a contradiction. •

Henceforth, we will assume that there are b blocks in the design. G is the

underlying channel intersection graph and we assume that the n terminals are

embedded on edges of G.

Lemma 3.8 The routing cost between any two terminals in G is no more than

2L.

Proof: Let x and y be two terminals in G. Let Pi be any monotone (staircase)

path passing through x and connecting two opposite corners w and w' of the

layout grid. Clearly, cost{Pi) = 2L. Similarly, let P2 be a monotone path passing

through y and connecting w and w'. Then, cost{Pi) + cost(P2) = 4L. Since at

least one of w or w' can be reached from both x and y with cost at most 2L, the

shortest path between x and y has cost no more than 2L. •

It is clear from Lemma3.8 that an optimal completegeneralized matching on the

terminals in G has cost no more than 2L • L|J < n •L.
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As in the previous section, our basic strategy is to construct a pathlength-

balanced tree by computing a sequence of generalized matchings on the terminals.

We begin with a forest of n isolated terminals in G (again for convenience, we

assume that n is a power of 2), each of which is a degenerate tree with CEP

being the terminal itself. The optimal completegeneralized matching on these n

terminals yields ^ paths, each of which defines a subtree. The optimal CEP into

each subtree is the midpoint of the corresponding path, so that the pathlength

skew from the CEP to the two terminals is zero. At each level, we compute an

optimal generalized matching on the set of CEPs (roots) of all subtrees in the

current forest and merge eachpair ofsubtrees into a larger subtree. As before, the

root of the resulting tree is chosen to be the balance point on the path connecting

the two subtrees such that the pathlength skew in the resulting tree is minimized

(see Figure 3.11).

Note that at each iteration, we need only match half as many nodes as in the

previous iteration. Thus, in [log n] matching iterations, we obtain a complete

tree topology. Ifn is not a power of 2, then as noted inthediscussion of CLOCKl,

there will be an odd number 2m + 1 of nodes to match at some level. For such

cases, we compute an optimal maximum-cardinality generalized matching on 2m

nodes, and then match m+ 1 nodes at the next level. Figure 3.12 gives a formal

description ofour pathlength-balanced tree algorithm CL0CK2.

The worst-case cost of TclocK2 can be bounded as follows:

Theorem 3.9 Given b blocks andn terminals in the LxL grid, cost{TcLOCK2) <

2nL.

Proof: By Lemma 3.8, the cost of a generalized matching on n terminals is
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Figure 3.11: Example of the CL0CK2 algorithm running on a random
module placement withan 8-terminal net. Solid dots are roots ofsubtrees
in the previous level; hollow dots are roots (CEPs) of new subtrees com
puted at the current level. At each level an optimal complete generalized
matching is computed on the solid points. For clarity, only the newly
added wires are highlighted at each level.

bounded by nL. After each iteration, the number of nodes to be matched is

reduced by half. Therefore, costiTcLOCKi) ^ + ^ + ^ + ••. < 2nL. •

In order to compute an optimal generalized matching on a set of nodes N in

G, we construct a weighted complete graph G' on N such that weight{x, y) =

distaix,y) for each pair of nodes x and y in N. This can be accomplished by

applying an 0{\E\ •\V\ + |Vp) implementation of Floyd's all-pairs shortest paths
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CLOCK2: A Pathlength-Balanced Tree Algorithm

for General CeU Design

Input: A set of terminals N embedded in a CIG G
Output: A pathlength-balanced tree TclocK2 with root CEP

r = 0

P = N

While |P| > 1
M = opt complete generalized matching on P
P' = 0

For {pi,p2} € M Do
Ti = subtree of T rooted at pi

T2 = subtree of T rooted at p2
p = balance point on minpathG{pi,P2) minimizing the

skew of the tree Ti Ur2 UminpathG{pi,P2)
P' = P'\J {p}

r = TU{{p,Pi},{p,P2}}
P = P' plus an unmatched node if |P| is odd

CEP = Root of T = single remaiiung point in P
Output Tclock2 = T

Figure 3.12: The matching-based pathlength-balanced tree algorithm
CL0CK2 for general cell design.

algorithm [Sed88] to the graph G = iV,E). Note that G is a planar graph and

therefore \E\ = 0(|V|). Since a channel intersection graph induced by bblocks

has 1^1 = 0(6+n), and typically b>n, the overall time complexity for this step is

0(6^). We may then apply an O(n^) algorithm for computing an optimal complete

matching ingeneral graphs [Law76]. However, this complexity will result in long

runtimes for large problem instances. Therefore, in order to achieve an efficient

implementation, we use the greedy matching heuristic [SS90a]. Such a heuristic

matching may be improved by removing overlapping edges of shortest paths, as

described in the proof of Lemma 3.7, so that no edge is used in more than one

shortest path. The time complexity of each iteration of CL0CK2 is dominated
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by the 0{h^) all-pairs shortest paths computation, which we invoke [logn] times,

so that the overall time complexity of CL0CK2 is 0{b^ •logn). This complexity

is reasonable, since the number of blocks is typically not large.

3.5 Experimental Results

Both CLOCKl and CL0CK2 were implemented in ANSI C for the Sun-4, Macin

tosh and IBM 3090 environments. This section summarizes the empirical results.

3.5.1 Empirical Data for Cell-Based Design

We have implemented three basic variants of CLOCKl, corresponding to dif

ferent matching subroutines. The first variant (SP) uses the linear-time space

partitioning heuristic of [SR83] to compute an approximate matching; the sec

ond variant (GR) uses an O(nlog^n) greedy matching heuristic [Sup90]; and the

third variant (SFC) uses an O(nlogn) spacefilling curve-based method [BP83].

We have further tested these three variants by running each both with and with

out two refinements: (i) removing all edge crossings in the heuristic matching,

and (ii) performing "H-fiipping" as necessary. Either of these optimizations can

be independently used with any of the three basic variants, yielding a total of

twelve distinct versions of the CLOCKl algorithm. These variants are denoted

and summarized as follows;

• SP - Use the space-partitioning matching heuristic of [SR83], which induces

a matching through recursive bisection of the region (rather than bisection

of the set of terminal locations).
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• GR - Use a greedy matching heuristic, which always adds the shortest edge

between unmatched terminals [Sup90].

• SFC - Use a space-filling curve to map the plane to a circle, then choose

the better of the two embedded matchings (i.e., either all odd edges or all

even edges in the induced Hamiltonian cyclethrough the terminal locations)

[BP83].

• SP+E, GR+E, SFC+E - Same as SP, GR and SFC, respectively, except

that the heuristic matching cost is further improved by edge-uncrossing.

• SP+H, GR+H, SFC+H - Sameas SP, GR and SFC, respectively, except

that pathlength skew is further reduced by H-flipping.

• SP+E+H, GR+E+H, SFC+E+H - Same as SP, GR, and SFC, re

spectively, except that both edge-uncrossing and H-flipping are performed.

For comparison, we also implemented

• MMM - The method of means and medians, similar to that of Jackson,

Srinivasan and Kuh [JSK90].

The algorithms were tested on a large number of random nets of up to 1024

terminals, generated from a uniform distribution in the 1000 x 1000 grid. Results

for a sample run with 50 random nets of each cardinality are summarized here:

Tables 3.1 and 3.2 compare the average tree costs and Tables 3.3 and 3.4 compare

the average pathlength skews for all heuristics. The data in the tables are given

in grid units.

The computational results indicate that both optimizations (edge-uncrossing

and H-flipping) significantly improve both pathlength skew and tree cost. When
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\N\ MMM SP GR SFC SP+E GR-l-E SFC-I-E

4 1197 1155 1136 1140 1129 1129 1130

8 2136 2075 2032 2031 1990 1990 1992

16 3506 3582 3409 3527 3343 3326 3343

32 5598 5922 5481 5788 5342 5277 5326

64 8377 9184 8526 9048 8100 8032 8068

128 12276 13793 12632 13656 11912 11725 11976

256 17874 20765 18625 20354 17573 17024 17768

512 25093 30443 27055 29618 25341 24548 25720

1024 36765 44304 38688 42750 36444 35086 37056

Table 3.1: Tree cost averages, in grid units, for the various heuristics.

\N\ SP-I-H gr-hh SFC-I-H SP-l-E-f-H GR-hE-l-H SFC-l-E-fH Meta

4 1125 1125 1125 1125 1125 1125 1125

8 2027 2028 1994 1971 1979 1980 1960

16 3502 3416 3428 3333 3322 3329 3268

32 5860 5628 5577 5329 5273 5304 5151

64 9226 8794 8748 8076 7982 8047 7844

128 13997 3315 13159 11871 11697 11914 11566

256 21307 19611 19713 17457 16955 17629 16919

512 31646 29175 28688 25188 24465 25483 24480

1024 46417 42110 41540 36276 34965 36814 34992

Table 3.2: Tree cost averages, in grid units, for the various heuristics
(continued).

the refinements are combined, average pathlength skew essentially vanishes com

pletely, and the tree cost of several of the variants is noticeably superior to that of

MMM, which may yield trees with large pathlength skews even for small examples

(Figure 3.13). The best variant appears to be GR+E+H, which is based on the

greedy matching heuristic together with edge-uncrossing and H-flipping. This is

noteworthy because the greedy method is asymptotically as good as the optimal
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lA^I MMM SP GR SFC SP-I-E GR-I-E SFC-hE

4 112.31 3.98 15.52 0.00 0.00 0.00 0.00

8 186.10 45.79 76.71 4.26 0.66 0.66 0.66

16 234.72 70.93 141.22 19.47 4.01 3.54 3.66

32 262.61 143.85 200.33 28.29 8.14 7.85 6.14

64 229.15 179.83 273.04 51.36 6.93 8.65 5.29

128 201.55 226.61 314.05 64.86 11.52 14.18 11.26

256 183.28 286.90 324.57 85.10 17.25 13.85 15.04

512 153.90 321.23 399.29 85.46 14.79 15.26 15.73

1024 125.34 339.34 402.59 89.75 17.14 16.71 15.35

Table 3.3: Pathlength skew averages, in grid units, for the various heuris
tics.

\N\ SP-FH gr-hh SFC+E sp-he-i-h GR-I-E-I-H SFC-HE-1-H Meta

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 3.38 0.12 0.00 0.00 0.00 0.00 0.00

16 1.80 3.80 0.12 0.00 0.00 0.00 0.00

32 3.53 8.64 0.00 0.00 0.00 0.00 0.00

64 13.17 27.69 1.26 0.00 0.00 0.00 0.00

128 20.79 40.34 3.18 0.00 1.02 0.24 0.00

256 41.79 51.87 7.49 0.00 0.92 0.00 0.00

512 76.35 90.66 13.51 0.39 0.62 0.39 0.00

1024 75.92 94.99 16.62 0.44 0.08 0.38 0.00

Table 3.4: Pathlength skew averages, in grid units, for the various heuris
tics (continued).

matching [SS90a]. Tables 3.5 and 3.6 highlight the contrast between GRH-E-I-H

and MMM, showing minimum, maximum and average values for both tree cost

and pathlength skew. Figures 3.14 and 3.15 depicts these same comparisons

graphically.

As noted in Chapter 2, any set of approximation heuristics induces a meta-

heuristic which returns the best solution found by any heuristic in the set; we also

84



Figure 3.13: MMM may yield large skew (right), compared with the opti
mal tree zero skew tree (left).

MMM GR-I-E-I-H

\N\ Min Ave Max Min Ave Max

4 2 112.31 379 0 0.00 0

8 46 186.10 407 0 0.00 0

16 86 234.72 416 0 0.00 0

32 118 262.61 540 0 0.00 0

64 141 229.15 337 0 0.00 0

128 120 201.55 282 0 1.02 30

256 127 183.28 250 0 0.92 46

512 103 153.90 203 0 0.62 31

1024 94 125.34 167 0 0.08 4

Table 3.5: Minimum, average and maximum pathlength skew values, in
grid units, for GR+E+H and MMM.

implemented this (denoted as "Meta"), which returns the minimum-skew result

from all of the other variants. Interestingly, in our experienceMeta always returns

a perfect pathlength-balanced tree, i.e., for each problem instance, at least one

of the heuristic variants will yield a zero pathlength skew solution. This is very

useful, especially when the heuristics are of similar complexity. For example, we

can solve the Primaryl benchmark using all twelve methods in a few minuteb on
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MMM GR+E+H

|JV| Min Ave Max Min Ave Max

4 656 1197 1823 555 1125 1668

8 1089 2136 2943 1123 1979 2810

16 2841 3506 4221 2793 3322 3993

32 4813 5598 6216 4695 5273 5866

64 7624 8377 9266 7372 7982 8556

128 11439 12276 13136 11052 11697 12243

256 17220 17874 18549 16379 16955 17543

512 25093 25666 26291 23866 24465 25325

1024 36126 36765 37561 34231 34965 36179

Table 3.6: Minimum, average and maximum tree costs, in grid units, for
GR+E+H and MMM.

250 T

200 ••

150 ••

MMM

iGR+H

GR+E

^GR+E+H

256 1024

net size

Figure 3.14: Overall pathlength skew comparisons between CLOCKl
(GR+E+H) and MMM.

a Sun-4/60 workstation.
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Figure3.15: Overall tree cost comparisons between CLOCKl (GR+E+H)
and MMM.

Figures 3.16 and 3.17 illustrate the output of variant GR+E+H on the Pri-

maryl and Primary2 benchmarks, using the same placement solutions as in

[JSK90]; note that although edges are depicted as straight lines in these dia

grams, they are actually routed rectilineaily. Table 3.7 compaxes the results of

GR+E+H and the results of [JSK90] which were provided by the authors [Sri91]:

GR+E+H completely eliminates pathlengthskew while obtaining 5% - 7% reduc

tion in tree cost. To confirm the correlation between the linear delay model and

actual delay, we ran HSPICE simulations on the Primaryl and Primary2 clock

trees (using MOSIS 2.0fi CMOS technology and 0.3pF gate loading capacitance);

the actual skews of our clock trees for Primajyl and Primary2 were 181ps and

741ps, respectively. Note that this clock skew was obtained simply by balancing

CEP-leaf pathlengths; as discussed earlier, more sophisticated delay models can
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allow a better choice of balance points in the matching-beised construction, and

indeed recent work of [Tsa91] chooses balance points according to the Elmore

model to achieve an "exact zero skew" clock routing.

1 1 ' M I \

0.00 1.00 2.00 3.00 4.00 5.00

Figure 3.16: Output of variant GR+E+H on the Primary1 benchmark
layout.

3.5.2 Empirical Data for General Cell Design

We have tested CL0CK2 on two sets of test cases. One set of examples contains

nets of sizes 4, 8, and 16 in layouts of 16 blocks, and the other set contains nets

ofsizes 4, 8, and 16 in layouts of32 blocks. Block sizes and layouts were assigned

randomly in the grid, by creating a fixed number ofnon-overlapping blocks, with
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Figure 3.17: Output of variant GR+E+H on the Primary2 benchmark
layout.

Pathlength Tree Pathlength Tree

skew (STD) cost skew (STD) cost Reduction Reduction

MMM MMM GR-l-E-l-H GR-l-E-hH skew (STD) cost (%)

PI 0.29 161.7 0.00 153.9 0.29 4.8

P2 0.74 406.3 0.00 376.7 0.74 7.3

Table 3.7: Comparisons of GR+E+H and MMM on Primaryl and Pri-
mary2 benchmark layouts ("skew (STD)" denotes the standard deviation
of the root-leaf pathlengths).

length, width, and lower-left coordinates all chosen from uniform distributions

on the interval [1,1'] with L = 1000.
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For each combination of net size and block cardinality, 100 instances were

generated randomly, and we compared the pathlength skew and tree cost of

TclocK2 with those produced by the Steiner tree heuristic of Kou, Markowsky

and Herman [KMB81] (cf. the discussion in Section 4.5.1 below). Results are

shown in Tables 3.8 and 3.9. Clearly, the average pathlength skew of Tclock2

is very close to zero, and it is never more than 2% of the pathlength skew in the

heuristic Steiner tree routing. The increase in tree cost of our routing tree varies

from 24% to 77% when compared with the Steiner tree. The data in the tables

are given in grid units,

As with the cell-beised layout benchmarks, we ran HSPICE simulations on

a number of examples (again using MOSIS 2.0/x CMOS technology and 0.3pF

gate loading capacitance). The actual skew of our clock tree is consistently much

smaller than that of the Steiner tree. For a typical 16-pin net in a 16-block

design, the clock skews of our clock tree and the Steiner tree are ISps and 69ps,

respectively.

TclocK2 may have overlapping edges in a channel because matching paths at

different levels may use the same channel. However, by Lemma 3.7, no channel

will appear in more than one path in a single matching. Therefore, there are at

most [logn] overlapping edges in each channel. The last column in Table 3.9

shows the average edge density in channels, computed as the average of non-zero

local column densities over ail columns in all channels.

3.6 Remarks and Extensions

Insummary, we have presented abottom-up approach for constructing pathlength-

balanced trees, with applications to clock routing in both cell-based and general
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Pathlength skew Tree cost

# modules \N\ Steiner CL0CK2 Steiner CL0CK2

16 4 511.0 0.8 1537 1921

16 8 794.9 12.9 2328 3478

16 16 1101.5 22.1 3332 5873

32 4 445.0 0.4 1401 1729

32 8 804.4 4.4 2261 3407

32 16 1136.9 12.0 3357 5847

Table 3.8: Average tree costs and pathlength skews, in grid units, of
CL0CK2 and the Steiner tree heuristic, respectively. For each row, 100
random instances in the 1000 by 1000 grid were generated and routed.

Pathlength Tree Edge density

b \N\ skew density in channels

16 4 0.00 1.26 1.24

16 8 0.02 1.49 1.40

16 16 0.02 1.77 1.63

32 4 0.01 1.24 1.21

32 8 0.01 1.52 1.36

32 16 0.01 1.74 1.48

Table 3.9: Average tree costs and pathlength skews of CL0CK2 output,
normalized (per instance) to corresponding heuristic Steiner tree values.
For each row, 100 random instances in the 1000 by 1000 grid were gener
ated and routed.

cell designs. Pathlength skew minimization is achieved by constructing the clock

tree iteratively through geometric or graph matchings, while carefully balancing

the pathlengths from the root to all leaves at each level of the construction. We

verified our algorithm on numerous random examples, on industry benchmark

circuits, and by timing simulations; the results indicate that our methods yield

trees with near-zero average pathlength skew and reasonably low tree cost.
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We recommend that ourglobal clock routing be performed before other wiring,

following established layout practice. In this way, there are no wire-crossing

conflicts, since two layers of metal may be used, one for horizontal wires, and

the other for vertical wires. The exact routing of the clock tree topology may be

later refined in the detailed routing step.

For cell-based design, we can realize additional tree cost savings by varying

the geometrical embedding of individual wires in the layout. In the Manhattan

metric, the "balance point" of a wire connecting two terminals is not unique but

is rather a locus of many possible locations (Figure 3.18), with the extremes cor

responding to the two L-shaped wire orientations. Our current implementation

sets the balance point of a segment to be its "Euclidean" midpoint, but sometimes

this is not necessarily an optimal choice in the pathlength-balanced tree construc

tion. Using a graph-theoretic formulation, wecan easily derive a polynomial-time

method, based on general graph matching, for finding the optimal set of balance

points within these loci.

At each level of our algorithm we may use lookahead of one or more levels,

or equivalently, when we reach a situation where pathlength skew can not be

eliminated even by using an H-flip, we can "go back" one or two levels on the

subtrees involved and try different H-flips during previous iterations on those

subtrees.^ In our experience, this strategy easily allows complete elimination of

pathlength skew at the current level, and requires only a constant amount of

computation per lookahead, provided that the lookahead depth (i.e., number of

^Tsay [Tsa91] recently gave an algorithm which uses ideas similar to both [JSK90] and the
present work, and incorporates one level of look-ahead to achieve a zero skew tree with respect
to the Elmore delay model [Elm48] [RPH83]. In the same spirit as our method, Tsay's method
combines pairs of zeroskew trees at "tapping points" to yieldlarger zeroskew trees. His tapping
points are the roots of the recursively merged subtrees, analogous to our "balance points".
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Loci of balance points
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Figure 3.18: Further optimizations are possible by matching over the loci
of balance point candidates.

levels) is bounded by a constant.^

Another important extension lies in the selection of the CEP at each level.

Instead of using the linear delay model to select a CEP, we may use a more

accurate (but more computationally expensive) RC tree delay model, in order

to bias the selection of the CEP so that clock skew is minimized as much as

possible. This is a strictly local modification of our method (cf. comments

^The recent "Deferred-Merge Embedding" algorithm of [BK92a] [BK92b] utilizes look-ahead
to reduce the cost of an initial clock tree computed by any previous method, while maintaining
exact zero clock skew. In regimes where the linear delay model applies, this method produces
the optimal (i.e., minimum-cost) zero-skew clock tree with respect to the prescribed topology,
and this tree will also enjoy optimal source-terminal delay.
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regarding [Tsa91] above) and does not affect the execution of the rest of the

algorithm or any of its variants. This extension, which applies to both CLOCKl

and CL0CK2, is particularly useful when varying gate capacitive loadings exist

at the terminals of the clock net. Since our algorithm operates in a bottom-

up fashion, and since we treat each level independently, our method is able to

accommodate variable gate loading very naturally.

Finally, the PBT problem is interesting from a theoretical standpoint: the

tradeoff between pathlength balance and tree cost appears important not only

for clock skew minimization, but also for a number of applications in areas ranging

from computational geometry to network design.
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CHAPTER 4

Bounded-Radius Trees

4.1 Introduction

In previous chapters we have proposed algorithms for constructing trees with the

objective of minimizingeither tree cost or pathlength skew. Here, weexamine the

problem of constructing an interconnection tree with bounded radius (the radius

of a tree is its maximum root-leaf pathlength). The bounded-radius formulation

is particularly relevant to circuit routing applications, where signal delay is pro

portional to the routing tree radius.^ Interconnection delay contributes up to

70% of the clock cycle in the design of dense, high performance circuits [DNA90]

[SS90b] and this motivates the bounded-radius formulation. Thus, performance-

driven placement androuting have received increased attention in the past several

years [CR91] [DAD84] [HNY87] [JKM87] [JK89] [LD90] [ML89] [OPK90].

This chapter begins by proposing a new methodfor bounded-radiiis tree con

struction. Our method constructs a spanning tree with radius at most (1 -t- e) •-R

by using an analog of the classical Prim minimum spanning tree construction

[Pri57], where R is the minimum possible tree radius and c is a non-negative

user-specified parameter. Such an approach offers a natural, smooth tradeoff

between the tree radius (maximum signal delay) aad the tree cost. For circuit

^See the linear delay model discussion in Section 3.2.1.
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layouts, this implies a great deal of algorithmic flexibility, as the parameter e can

be varied depending on performance constraints. The method is easy to describe

and implement, and empirical performance results are very promising. However,

the tree cost using this method can be an unbounded factor worse than optimal.

We therefore also propose a second, provably good method for bounded-radius

tree construction which simultaneously minimizes both tree cost and tree radius.

Given a positive real parameter e and a set of points, this method produces a

spanning tree with radius at most (1 + e) •i2, and with cost at most (1 + f) times

the MST cost. Thus, both the cost and the radius are simultaneously bounded

by constant factors away from their optimal values. Our method generalizes to

Steiner tree formulations in arbitrary weighted graphs, where we achieve a cost

bound of 2 •(1 + 7) times the optimal Steiner tree cost while still observing the

(1 + e) •-R radius limit.

We then show that geometry helps: in the Manhattan plane, the cost bound

for Steiner trees can beimproved to | •(1 + 7) times optimal, and inthe Euclidean

plane, the Steiner tree cost bound improves even further, to ^ •(1 + 7) times

optimal. This series of results is in some sense surprising since construction of a

minimum spanning treewith bounded diameter ina general graph isNP-complete

HLC89], as is the Steiner problem in graphs [GJ77].

Our construction can minimizeeither tree cost (yielding a minimum spanning

tree) or thelongest source-sink path (yielding a minimum-radius tree), depending

respectively on whether we set e = 00 or e = 0. Between these two extremes, the

method offers a continuous, smooth tradeoffbetweenthe competing requirements

of minimum radius and minimum tree cost.

In VLSI circuit design, timing is actually path-dependent, rather than net-
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dependent. In other words, timing constraints axe established with respect to the

delays between primary inputs and primary outputs. We may therefore wish to

use varying constraints on the different root-leaf paths within the tree (e.g., a

source-sink connection on a timing-critical path will require a small value of e,

while a connection not on any critical path can allow large e). Similarly, we may

wish to impose different delay bounds Ri on each terminal. Our method extends

to handle these cases, and we establish analogous constant-factor bounds on both

the cost and the radius of the resulting tree.

The remainder of this chapter is organized as follows. In Section 4.2, we

present a general formulation of the bounded-radius tree problem. In Section

4.3, we give a natural heuristic construction (as well as several simple variants)

for computing bounded-radius trees which exhibits good empirical performance.

In Section 4.4, we present another effective algorithm for computing bounded-

radius trees, and show that the algorithm is provably good in the sense that it

has constant-factor performance bounds with respect to both the radius and cost

of the resulting tree. Section 4.5 generalizes this latter method to Steiner trees,

and Section 4.6 extends the approach in two ways: (i) where different values of

e are allowed within a given tree, and (ii) where different delay bounds Ri are

associated with each terminal. Experimental results are reported in Section 4.7.

4.2 The Problem Formulation

Recall from Chapter 3 that circuit routing applications motivate two flavors of

problem embedding. In the case ofhighly granular cell-based layouts, the cost of

routing between two terminals isessentially given bygeometric distance, while in

the caseofgeneral cell design, the routing cost is the costof the shortest path in a

97



graph of routing costs (the channel intersection graph [DAKSSj) between nodes.

While the general graph formulation subsumes the geometric formulation, the

latter has special structure that may be exploited to yield tighter performance

bounds. Thus, in this discussion we treat the graph and geometric formulations

separately.

We begin by defining the underlying routing graph to be a connected weighted

graph G = {V,E), where a net corresponds to a subset N CV of the nodes in this

graph, with one node designated a source and the rest sinks. A routing solution

for the net is a tree in G spanning N, which we call the routing tree of the net.

Recall that the cost of a path in G is the sum of costs of its edges, and a short

est path in G between two terminals x,y E N, denoted by minpathG{x,y), is a

path connecting x and y with minimum cost. In a routing tree T, minpathxix, y)

is simply the unique path between x and y. For a weighted graph G we use

distG{x,y) to denote the cost of minpathaix^y). Note that in the geometric

case, the cost of minpatha^x^y) is simply geometric distance, and we use the

notation dist{x,y) for clarity.

Definition: The radius i? of a signal net is the cost of a shortest path in G from

the source to the farthest sink, i.e., R = max dzstG(s,x).
x^N

Definition: The radius of a routing tree T, denoted by r{T), is the cost of a

(shortest) path in T from the source s to thefurthest sink. Clearly, r{T) > R for

any routing tree T.

According to the linear RC delay model, we minimize the interconnection

delay of a net by minimizing the radius of the routing tree. On the other hand,

we also prefer a routing tree with small cost. Without this latter consideration,

we could simply use the shortest paths tree {SPT) of the net, i.e., the union of
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all shortest source-sink paths computed by Dijkstra's single-source shortest paths

algorithm [PS82]. Although the SPT has the smallest possible radius r{SPT) of

any routing tree, the SPT cost might be very high: Figure 4.1 shows a case where

the cost of the shortest paths tree can be n(|iV|) times greater than the cost of

the minimum spanning tree.

Figure 4.1: An example where the cost of a shortest paths tree (right) is
0(1 AT I) times larger than the cost of a minimum spanning tree (left).

Figure4.2: A bounded-radius tree, achieving both low cost as well as low
radius.

A routing tree with high cost may increasethe overallrouting area. Moreover,

highcost alsocontributes to the interconnection delays, as well as to systempower

requirements, which is not captured in the linear RC model. Therefore, neither
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tree shown in Figure 4.1 is particularly desirable, and instead, we may prefer a

tree such as the one shown in Figure 4.2, which has both low overall cost and low

radius. In this chapter we propose a general scheme for achieving this ideal.

In order to consider both the radius and the cost in the routing tree construc

tion, we use the following bounded-radius minimum routing tree formulation:

The Bounded-Radius Minimum Routing Tree (BRMRT) Problem: Given

a parameter e > 0 and a signal net with radius R, find a minimum-cost routing

tree T with radius r{T) < (1 -|- e) • i?.

The parameter e controls the tradeoff between the radius and the cost of the

tree. As we noted earlier, when e = 0 we minimize the radius of the routing tree

and thus obtain a minimum-radius tree for the signal net; on the other hand,

when e = oo we minimize the cost of the tree and obtain a minimum spanning

tree. Intuitively, as e grows there is less restriction on the radius, allowing further

reduction of tree cost. Figure 4.3 gives an example where three distinct spanning

trees are obtained using different values of e: Figure 4.3(a) shows a minimum-

radius spanning tree corresponding to the case e = 0, with r{T) = 6; Figure

4.3(b) shows a solution with e = 1 and r{T) = 10; and Figure 4.3(c) shows the

minimum spanning tree corresponding to the case e = oo, with r(T) = 14.

4.3 Bounded-Radius Minimum Spanning Tree Routing

In global routing for cell-based design, all routing costs between terminals are

simply given by geometric distance, and so the underlying routing graph is G =

{V,E) with V = N. For this case, many global routing methods are based

on constructing a spanning tree for each net (e.g., see [CP88]). Therefore, the
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(a) e = 0. cost(T) = 17, r(T)=6 (b) e = 1. cost(T) = 15. r(T)=10 (c) e =oo,cost(T) = 14, r(T)=14

Figure 4.3: An example in the Manhattan plane: increasing e may result
in decreased tree cost, but increased tree radius.

BRMRT problem becomes the Bounded Radius Minimum Spanning Tree

(BRMST) problem.

Wenowgivea simpleheuristic that finds a bounded-radius minimum spanning

tree solution by growing a single component, following the general scheme of

Prim's minimumspanning tree construction [Pri57].

4.3.1 The Basic Algorithm: BPRIM

Our basic algorithm grows a tree T = (V, E') which initially contains only the

source s. At each step, we choose x €V' and y E N —V such that dist{x,y) is

minimum. If adding the edge {x, y) to T does not violate the radius constraint,

i.e., distris, x)+dist{x, y) < {l+e)'R, we include theedge (x,y) inT. Otherwise,

we "backtrace" in T along the path from x to 5 to find the first terminal x' such

that the edge {x',y) is appropriate (i.e., distT{s,x') + dist{x\y) < R), and add

(x', y) to the tree. In the worst case, the backtracing will terminate with x' = s,

since the edge(s, y) is always appropriate.

Note that in the backtracing we could choose x' such that distT{s,x') +

dist{x',y) < {1 + e) • R. However, our choice of appropriate edges leads to
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fewer backtracing operations, while guaranteeing that backtracing is still always

possible. In other words, we intentionally introduce some "slack" at y so that

terminals within an tR neighborhood of y will not cause additional backtracing.

Limiting the amount of backtracing in this way will keep the cost of the resulting

tree close to that of the minimum spanning tree.

We call this algorithm the Bounded Prim (BPRIM) construction; a high-

level description is given in Figure 4.4. The BPRIM algorithm is very efficient

with the most direct implementation having O(n^) time complexity since each

new terminal can force examination of most of the terminals that have already

been added to the tree. This algorithm has several salient properties. First, we

can show that the radius of the resulting tree Tbprim is never greater than the

radius of the MST whenever the MST is unique.

BPRIM: computing a bounded-radius spanning tree

Input: A net N with radius R, source s; parameter c > 0
Output: A spanning tree Tbprim with rjTBPRiM) < (1 -I- c) • -R
T = {V',E') = {{s},iD)
While \V'\ < |iV|

Select two terminals x eV and y e N - V minimizing dist(x, i
If distT{s, x) + dist{x, i/) < (1 -I- «) •i? Then x' = x
Else find the first terminal x' along the path in T from x to 5

such that distT{s, x') -|- dist{x\ y) < R
V' = V'\J {x'}
E' = E'li{{x\y)}

Output Tbprim = T

Figure 4.4: Algorithm BPRIM: computing a bounded-radius spanning
tree Tbprim for a given net N, with source s G N and radius il, using
parameter e > 0.

Lemma 4.1 If the MST is unique, then r{TBPRiM) < r{MST).
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Proof: If r{MST) < (1 + e) • i2, then r{TBPRiM) = r{MST) since Tbprim

and the MST will each be unique and the two will be identical to each other.

Otherwise, r{TBPRiM) < (I + e) -R < r{MST) by construction. q

If the MST is not unique, then the radii of different minimum spanning trees

can vary by an unbounded amount, and r{TBPRiM) may be greater than r{MST),

i.e.. Lemma 4.1 will not hold for some choice of the MST. Figure 4.5 shows a point

set where a Prim-like minimum spanning tree algorithm may choose a connection

to point yi instead of point xi; or j/2 instead of X2, etc. so that the tree radius is

much greater than optimum. In this way, for some MST it may be possible for

an unfortunate sequence of choices by BPRIM to yield r{TBPRiM) r{MST)

even though the two trees have identical cost. However, r{TBPRiM) cannot be

greater than the maximum possible MST radius.

*5

yr

• • • • • •

source- .6

Figure 4.5: An example where the radius of the routing tree (MST) pro
duced by a Prim-like construction (right) is arbitrarily larger than a min
imum-radius MST (left).

With regard to tree cost, we note that the difference between BPRIM and

MST costs will depend on the parameter e. In practice, most nets will have
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between two and four terminals. Furthermore, it is unlikely that a single gate

will be used to drive more than six gates in CMOS design. In this c^e, we can

show that the cost of the resulting tree is within a small constant factor of the

cost of the MST for nets of practical size. Table 4.1 gives the worst-case ratio of

BPRIM cost over MST cost for small values of \N\, as a function of e.

Lemma 4.2 Let Bit) he the worst-case ratio of the cost of Tbprim to the MST

cost. Then the hounds listed in Tahle 4-1 hold.

Net size Bound B(€) c = 0 ^=1 e= 1

|iV| = 2 1 1 1 1

|iVl = 3 2 2 4

3
1

tiV| = 4 3
5

3

3
2

\N\ = 5 max(f±f, 1^3J 4
7

3
2

|iV| = 6 5 3
5

2

Table 4.1: Analysis of B(e) for small nets in the Manhattan plane.

Proof: These results are obtained by studying the number of backtracings that

can occur. We give the proof for |iVl = 5. Other cases are similarly proved.

Assume that the coordinates of the net have been scaled so that the net has

unit radius. If backtracing occurs, then cost{MST) > 1 + e. Suppose that there

is only one backtracing. Let cost{e) be the cost of the edge which caused the

bax:ktracing. Then

B{e)<
cost{MST) —cost{e) + 1

cost{MST)

1 2 + e
< 1 + cost{MST) < 1 +

l+c 1+e
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If backtracing occurs twice, let cost{x) and cost{y) be the costs of the edges

which cause the backtracings. Then,

, . ^ cost{MST) —cost{x) —cost{y) + 2
- cost{MST)

<1+ ?_<i+^ =i±f
- cost{MST)- 1 + e l+£

If backtracing occurs three times, Tbprim must be a star graph and it is easy

to see that cost(MST) > 1 + 3e. Thus,

4 4

- cost{MST) - l + 3e

Therefore,

Df \ ^ /.2 + e 3-f-e 4B(e) < max(— , — ,

3 + e 4 ^
= • TT3e>

•

Experimental results show that B{e) is in practice still bounded by a small

constant even for large nets (see the tables in Section 4.7). However, examples

exist which show that the worst-case performance ratio of BPRIM is not bounded

by a constant for any value of e.

Theorem 4.3 For any e there exists a netfor which BPRIM will have an arbi

trarily large performance ratio.
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Proof: On the net shown in Figure 4.6, BPRIM will have an unbounded per

formance ratio. The optimal solution is shown on the left, where source-leaf

pathlengths are equal to R. Terminal y is situated so that the pathlength from

the source to any leaf via y is slightly greater than (1 -|- e) • i?. This will cause

the BPRIM construction to backtrace all the way back to the source from every

leaf, yielding an unbounded performance ratio. If e is large, y can be replaced

by many closely spaced terminals so that BPRIM creates a long path between s

and x; this forces arbitrarily large performance ratio for any value of e. •

source

• •-

• •

f •-

all leaves
connect directly

to source

Figure 4.6: Example where the performance ratio of BPRIM is not
bounded by a constant for any e. The optimal solution is shown on the
left, while the BPRIM output is shown on the right.

4.3.2 Extensions of BPRIM

The bounded-radius construction can also be applied to minimum spanning tree

methods other than Prim's algorithm. A more general algorithm template is

given in Figure 4.7.

This general template gives rise to a number of distinct variants, depending
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Extended-BPRIM: computing a bounded-radius spanning tree
Input: A net N with radius R, source s; parameter e > 0

Output: A spanning tree T with r(T) < (1 c) • i?

T = (V',E') = ({$},i)
While |V'| < 1*1

Select two terminals x € V and y £ N —V
with distxis, x) + dist(x, y) < (1 + c) • Jt

V' = V'U {a;}
E'=E'U{(x,y)}

Output T

Figure 4.7: A more general BPRIM template: computing a
bounded-radius spanning tree T for a given net N, with source s e N
and radius R, using parameter e > 0.

upon how the pair of terminals x and y are selected inside the inner loop. The

following variants yield significant performance improvements over the BPRIM

algorithm:

• HI - Find x and i/ as in BPRIM, and select a terminal x' along the path

in T from x to 5 which yields a minimum-length appropriate edge (x',y).

• H2 - Find a terminal y e N -V minimizing dist{x,y) for any x e V,

and select the terminal x' € V which yields a minimum-length appropriate

edge (x', y).

• H3 - Finda pairofterminals x € V and y GiV - V that yield a minimum-

length appropriate edge {x,y).

Lemma 4.1 also holds for each of the variants HI, H2, and H3. The time

complexity of variants HI and H2 is 0(|iVp), while variant H3 can be easily im

plemented within time 0(|iV|3). Empirical results of the BPRIM method are very
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promising, as can be seen in Section 4.7. However, Figure 4.6 shows that variant

HI will also have unbounded worst-case performance ratio, and similarexamples

exist (see Figure 4.8) which establish an unbounded performance ratio for vari

ants H2 and H3. With this in mind, in the next section we develop a provably

good approach to performance-driven global routing based on a combination of

the minimum spanning tree and shortest paths tree constructions.

source
source

Figure 4.8: Example where the performance ratio of both H2 and H3 is
not bounded by a constant for any e. The optimal solution is shown on
the left; both Th2 and Thz will be identical to the tree shown on the right.

4.4 Bounded-Radius Spanning Trees

The basic idea of our provably good bounded-radius minimum spanning tree

algorithm is to construct a subgraph Q of G, such that Q spans N and has both

small cost and small radius. Therefore, the shortest paths tree of Q will also have

small cost and radius, and will correspond to a good routing solution. We again
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use the routing graph G ={V,E) with V = N. Our algorithm is as follows:

• Compute the shortest paths tree SPTq of G, and compute the minimum

spanning tree MSTq of G. Also, initialize the graph Q to be equal to

MSTg.

• Let L be the sequence of vertices corresponding to a depth-first tour of

MSTg', the tour will traverse each edge of MSTq exactly twice (see Figure

4.9), and hence the cost of this tour is 2 •cost{MSTG)-

• Traverse L while keeping a running total S of traversed edge costs. As

this traversal reaches each node Li, check whether S > e - distG{s,Li). If

so, reset 5 to 0 and merge minpathG{s,Li) into Q. Continue traversing L

while repeating this process.

• Our final routing tree is SPTq, the shortest paths tree of Q.

L = depth-first
tour of MST

Figure 4.9: A spanning tree and its depth-first tour.

Because our method yields a bounded-radius, bounded-cost routing tree, we call

this the BRBC algorithm. The formal description of the algorithm is given in
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Figure 4.10. We now prove that for any fixed e the BRBC algorithm produces

a routing tree Tbrbc with radius and cost simultaneously bounded by small

constants times optimum.

BRBC: Computing a bounded-radius, bounded-cost spanning tree

Input: A graph G = {V,E) (with radius R, source s € V), e > 0
Output: A spanning tree Tbrbc with r{TBRBc) < (1 + c) *-R

and cost(TBRBc) ^ (1 + |) •cost(MSTg)
Q = MSTg

L = depth-first tour of MSTg

5 = 0

For i = 1 to \L\ —1
5 = 5-1- dist{Li, £,+i)
If 5 > € •distois, it+i) Then

Q = QU minpathois, Li+i)
5 = 0

Output Tbrbc = shortest paths tree of Q

Figure 4.10: Computing a bounded-radius spanning tree Tbrbc for
G = {V,E), with source 5 € V and radius R, using parameter
e > 0. Tbrbc will have radius at most (1 -t- e) • R, and cost at most
(1 -H f) •costiMSTa).

Theorem 4.4 For any weighted graph G and e > 0, r{Tbrbc) < (1 + e) *i2.

Proof: For any v eV, let u.-i be the last node before v on the MST traversal

L for which BRBC added minpathais^Vi-i) to Q (see Figure 4,11). By the

construction of the algorithm, we know that disti{vi-i,v) < e-R. We then have

distT{s,v) < distT{s,Vi-i) -|- distL{vi-i,v)

< distais,Ui-i) + €• R

^R-\-6'R=(1-\-6)'R

•
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minpathQ(s,Vi'

L=MST tour q_q_

Figure 4.11: Depiction of the bounded-radius construction.

Theorem 4.5 For any weighted graph G and parameter e > 0, cost{TBRBc) <

{l + ^J'CostiMSTa).

Proof: Let vi,v2,... ,Vm be the set of nodes to which the algorithm added short

est paths from the source node, and let uo = s. We have

m

cost(TBRBc) ^ cost{MSTa) + y^,dista(s,Vi)
t=i

since Tbrbc is a subtree of the union of the MST with all of the added shortest

paths. By the algorithm construction, distL{vi-i,Vi) > e • distG{s,Vi) for all

i = 1,..., m and so we obtain

m j

cost[TBRBc) ^ cost[MSTg) + ~ ' distij{vi-i,vi)
i=i ^

< cost{MSTg) + - •cost{L)

Since cost{L) = 2 •cost{MSTG), we have

2

cost(TBRBc) ^ cost{MSTg) + ~ •cost{MSTg)

=(1 -^ ^) •cost{MSTG)
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Theorem 4.5 suggests that for e = 0, the ratio bounded by

any constant, and indeed this is illustrated in the example of Figure 4.1 above,

"(I'VI).

It should be noted that a method similar to the BRBC construction was

recently used in the distributed computation literature by Awerbuch, Baratz and

Peleg [ABP90] for constructing spanning trees with small diameter and small

weight. However, our algorithm treats the bounded-radius minimum spanning

tree problem, while they treat the tree diameter instead. Moreover, our method

entails a simpler construction with tighter performance bounds.

4.5 Bounded-Radius Steiner Trees

In the previous section, we treated the bounded-radius minimum spanning tree

problem, where each net N is routed in an underlying routing graph G = (V, E)

with V = N. In this section we treat the more general version of the problem,

where Steiner points are allowed.

4.5.1 Algorithm for Graphs With Steiner Points

When we seek to connect a subset of the nodes in a graph and are allowed to

use the remaining nodes as Steiner points^, the BRMRT problem becomes the

Bounded-Radius Optimal Steiner Tree (BROST) problem. The following

result is immediate:

Lemma 4.6 The BROST problem is NP-complete.

^e.g., in building-block VLSI design where the underlying routing graph is based on the
channel intersection graph [DAK85].
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Proof: Setting e = oo yields the graph Steiner problem, which is known to be

NP-complete [GJ77]. ^

Hence, in the BROST problem, even the construction of a "minimumspanning

tree" for N in G is equivalent to the Steiner problem in graphs. This means that

if we are to apply the BRBC approach to the BROST problem while maintaining

polynomial complexity, we must begin by approximating the minimum-cost tree

spanning .N within G, i.e., the minimum Steiner tree over N.

Recall that the BRBC algorithm used the MST to obtain a reasonably short

tour of the vertices. Observe that any tour of the vertices having reasonably

small cost will suffice (e.g., traveling salesman, Chinese postman), and moreover

in constructing this tour our only requirement is that the tour visits every node

in N.

Our approximation algorithm for the bounded-radius optimal Steiner tree

problem is similar to the algorithm presented in Section 4.4: given any approxi

mate Steiner tree T, we can use the approach of Section 4.4 to construct a routing

tree having radius bounded by (1 -|-e) •r{f), and cost bounded by (1 -t-1) •cost{f).

We use a heuristic of Kou, Markowsky and Berman (KMB) [KMB81] [WWW86]

to build a Steiner tree f = Tkmb in the underlying routing graph; Tkmb will

have cost within a factor 2 of optimal.^

We construct a depth-first tour Lofthe heuristic Steiner treeTkmb- Next, we

traverse X, adding to Tkmb shortest paths from thesource to selected vertices of

3Given a graph G = (K, E) and a net ofterminals N CV, the method ofKou, Markovsky
and Berman is as follows. First, construct the complete graphG' over N witheach edge weight
equal to the cost of the corresponding shortest path in G. Compute MSTqi, the minimum
spanning tree ofG', and expand each edge of MSTq' into the corresponding shortest path,
yielding a subgraph G" that spans N. Finally, compute the minimum spanning tree MSTq"
ofG", and delete pendant edges from MSTq" until all leaves are members ofN. Output the
resulting tree.
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L, as in Section 4.4. Finally, we compute the shortest paths tree in the resulting

graph and output the union of all shortest paths from the source to terminals in

(note that this will include intermediate non-terminal nodes on the shortest

paths as Steiner points). We call this Steiner version the BRBC^ algorithm.

Since the cost of L will be at most 4 times the optimal Steiner tree (Topt) cost,

the cost ofTbrbcjs is at most 2•(1 -h |) times optimal.^

Theorem 4.7 For any weighted graph G = {V,E), node subset N C V and

parameter e, r{TBRBC-s) < (H-e)-i?, and cost(Tbrbcs) < 2-(l-f-^)-co5<(ropt).

Proof: By our previous arguments, r{TBRBCjs) < {1 + e) • R. In addition,

cost{TBRBCjs) < {l+ -J-cost{TKMB)- S'mce cost{TKMB) < 2-cost(Topt), we have

C0St{TBRBCJs) < 2•(1 -I- |) •COSt{Topt)- •

4.5.2 Geometry Helps in Routing

If we are routing in a metricspace and are allowed to introduce arbitrary Steiner

points to reduce the tree cost/radius, we can slightly modify the basic algorithm

(of Figure 4.10) to introduce Steiner points on the tour L whenever S = 2e •R.

From each of these Steiner points we construct shortest paths to the source and

add themto Q as in the original BRBC algorithm. Thus, each node in the tour L

willbe within e• of a Steinerpoint, i.e., within (1 -|- e)• of the source. Because

it exploits inherent geometry, we call this version the BRBC-G algorithm. The

following radius and cost bounds hold, with the proofs of these bounds similar

to those of Theorems 4.4 and 4.5.

^Using a recent graph Steiner heuristic ofZelikovsky [Zel92], this cost bound may be further
reduced to ^ •(1 -1- ^) times optimal.
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Theorem 4.8 In the geometric plane, for given parameter €> 0, ^(Tbrbc-g) ^

(1 + e) •R and cost(TBRBCjG) < 2•(1 + i) •cost{Topt).

In addition, well-known results which bound the ratio in various geome

tries can be used with the above scheme to yield even better bounds whenever the

edge weights are induced by an underlying norm (e.g., Manhattan or Euclidean).

To illustrate how these observations can be combined to yield improved bounds

for Steiner routing in metric spaces, we give two immediate examples:

Corollary 4.9 Given a set of terminals N in the Manhattan plane and a real

parameter e>0, r(TBRBCJ3) < (1 + e) •i? and cost{TBRBCJ3) < f' +1)'

Proof: By a result of Hwang [Hwa76], the rectilinear minimum spanning tree

gives a | approximation to the optimal rectilinear Steiner tree.® We then apply

arguments similar to those used for Theorems 4.4 and 4.5. •

Corollary 4.10 Given a set of terminals N in the Euclidean plane and a real

parameter e, r{TBRBC.G) < (1 + e) • cost{TBRBCJ3) ^ ^ + e)'

Proof: By a recent result of Du and Hwang [DH90], the Euclidean minimum

spanning tree gives a ^ approximation to the optimal Euclidean Steiner tree.

We again apply the arguments of Theorems 4.4 and 4.5. •

Note that this result generalizes when we have increased flexibility in the

wiring geometry, e.g., 30-60-90 degree wiring instead of rectilinear. By applying

a recent result of [SW92] for \-geometries (allowing angles y), a cost bound

of cos f • (1 -I- 7) may be established. When Aapproaches 00, this bound

approaches the bound of Corollary 4.10 above.

®Using recent results ofBerman and Ramaiyer [BR92], this constant may be further reduced
to^.
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4.6 Generalization to Non-Uniform Values of e

Often we may wish to use varying wirelength constraints on the different source-

sink paths within a given signal net, since timing in VLSI circuits is actually path-

dependent, rather than net-dependent. For example, a source-sink connection on

a timing-critical path will require a small value of e, whereas for a connection

not on any critical path, we may allow large e in order to reduce tree cost. This

yields the following generalization of the BRMRT formulation:

The Non-Uniform Bounded-Radius Minimum Routing Tree (NBRMRT)

Problem: Given parameters Cj > 0 associated with each sink terminal n,- of a

signal net having source s and radius R, find a minimum-cost routing tree T such

that distT{s,ni) < {1 + €i) •R for each n,-.

In this section, we extend our method to handle this case, and establish

constant-factor bounds on both the cost and radius of the routing solution. Al

though we restrict the discussion to spanning tree routing, extensions to (geo

metric) Steiner routing are straightforward using the techniques of Sections 4.4

and 4.5.

To handle a different pathlength constraint a for each terminal n,- in the net N,

we modify the original algorithm of Figure 4.10 by changing the conditional inside

the loop from "5 > e*distais, I't+i)" —̂ «+i' d,istG{s, Xj+i)". We call this

modified algorithm BRBC-Ci, and show the following bound on the pathlengths

using an argument analogous to that in the proof ofTheorem 4.4:

Lemma 4.11 Fov an arbitvavy weighted graph G, with source s and radius R,

and terminal radius parameters Ci, £2) •••> —(1 "I" ^

for each terminal Ui.
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Arguments similar to those used earlier yield the bound cost{TBRBC^i) ^

m»n(ei,e2,...,f|jy|))' cost{MSTG). However, we may improve this bound as fol
lows. Without loss of generality, we can assume that all of the e,'s are sorted

\N\
in non-decreasing order: ci < €2 < ... < e|jv|. Let e = niaxe,', and define

-2-cos<(M5TG)-j

Lemma 4.12 For any weighted graph G and terminal radius parameters ci <

e2 < ... < e|iv|, cost{TBRBC^i) ^ (1 + ' HM(ei,£2,...,£*)) •cost{MSTG), where

HM denotes harmonic mean.

Proof: Let ui, U2, •••, be the set of nodes to which the algorithm added short

est paths from the source node, as shown in Figure 4.12. As before, the routing

tree produced by our modified algorithm is a subtree of Q, the union of MSTq

and the added shortest paths. The routing tree cost is therefore bounded by:

m

cost{Q) = cost{MSTG) + distajs, Vj)
i=i

1
< cost{MSTG) + X]—disti{vi-i,vi)

t=i

distG(s,Vi)

L=MSTtourpv ^ O

Figure 4.12: Tree construction using non-uniform values of e.

Let li denote distL{vi-i,Vi). By the construction, we have /,• > •distG{s,Vi).

Because no edge length is greater than R, we have li < {1 + e) •R and

117



^ = 2•costiMSTa) <k-{\ + e)'R
t=i

Therefore,

^ 1 +^- distiXvi-uVi) = 2^- < 2^
t = l t=l t=l

m

since /,• < (1 + e) • i?, < k •{I + e) •R, and the Cj's are in sorted order.
»"=i

Factoring out (1 + e) and using the definition of k, we obtain

X 1 o 1 2-cost{MSTG)

Cancelling (1 + e), multiplying by and regrouping, we get

k 1

£< . i=^ .2.co5<(M5'Tg)
a: — 1 A;

^ ^ 2. cos<(M5rG)
fc-1 HM{€i,€2,...,ek)

It follows that

cost(Q) <costiMSTa) +̂ '2'cost{MSTa)

= (1 + — -). costiMSTa)

These results are summarized as follows:

Theorem 4.13 For any weighted graph G and terminal radius parameters ci <

t2 < < ^\N\, eac/i terminal Ui in TBRBC^i has distTBHBc^M '̂'̂ i) ^ (1 +

e.) •R, and cost{TBRBC^i) < (1 + ' hm(€i% where k =
j-2 eost(M^q)-j denotes harmonic mean.
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In the case that we wish to impose different delay bounds i?,- on each terminal

so that distT{s,ni) < (1 + e) •il,-, we need only introduce non-uniform e,- values,

with e,- = e • With this transformation, the BRBC-ti algorithm may now be

directly applied. Such timing constraints are typically induced by performance-

driven placement tools [SCK91a], and must be satisfied by the global router.

4.7 Experimental Results

The BPRIM algorithm and variants HI, H2 and H3, as well as the BRBC and

BRBC_S algorithms, were implemented in ANSI C for the Sun-4, Macintosh and

IBM environments.

The BPRIM cClgorithm and variants HI, H2, and H3 were tested on a large

number of random nets of up to 50 terminals, generated from a uniform distri

bution in the 1000 x 1000 grid. As noted in Chapter 2, any set of approximation

heuristics induces a meta-heuristic which returns the best solution found by any

heuristic in the set and which has asymptotic complexity equal to that of the

slowest heuristic. We implemented the meta-heuristic over BPRIM, HI, H2 and

H3, denoted by Meta(BPRIM,Hl,H2,H3), which returns the routing tree with

minimum cost.

Although there exist examples where the BPRIM algorithm outperforms the

more complicated variants (e.g., see Figure 4.13), the data shown in the Tables

of this section indicate that on average, variant HI dominates BPRIM, H2 dom

inates HI, and H3 dominates H2 (Tables 4.2 through 4.5). Figures 4.14 and 4.15

show that the BPRIM approach produces a smooth tradeoff between tree cost

and tree radius.
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Figure4.13: Anexample where BPRIM (left)outperforms variants H2 and
H3 (right); here ^ is a very small real number and c = (2 —3^)/(2 + 3^).

The BRBC algorithm was also tested on a large number of random nets

generated from a uniform distribution in the grid. Results are summarized in

Figures 4.16 and 4.17, and clearly show the smooth tradeoff between cost and

radius. As e decreases, both the cost and radius curves shift monotonically from

that of the minimum spanning tree to that of the shortest paths tree. A more

detailed account of the performance of BRBC is given in Tables 4.6 and 4.7.

The BRBC_S algorithm was tested on random block layouts in thegrid; these

were generated by adding a fixed number of non-overlapping blocks, with length,

width and lower-left coordinates all chosen randomly from a uniformdistribution.

Given a block design, nets with terminals on the block peripheries were routed

within the corresponding channel intersection graph DAK85 . An example of

the output from the BRBC.S algorithm is shown in Figure 4.18.

A detailed summary of experimental results for the performance of BRBC_S

in block designs is given in Tables 4.8 and 4.9. Once again, the simulations

confirm the tradeoffs inherent in the bounded-radius routing approach. Note
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Figure 4.14: This chart illustrates the smooth tradeoff between tree cost
and tree radius produced by the BPRIM algorithm. The parameter e
determines the tradeoff between the shortest paths tree and the minimum
spanning tree; as e increases, the resulting tree increasingly reflects the
shortest paths tree in terms of radius.

that although our construction starts with the heuristic Steiner tree of Kou,

Markovsky and Berman, our routing solution may in some cases have smaller

cost than the KMB tree. In all cases, the radius of Tbrbc^ is no larger than

that of the KMB tree. This too is reflected in the experimental data.

To validate the use of the linear delay model, the HSPICE circuit simulation

package was used to examine a number of routing trees. As an example, Figure

4.19 shows how the optimal delay routing indeed embodies a tradeoff between

the shortest paths tree routing and the minimum spanning tree routing.

From the tables that follow, we observe the following. For any given value

of €, the BPRIM approach, being inherently greedy, will yield a routing solution
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Figure 4.15: This chart illustrates the smooth tradeoff between tree cost
and tree radius produced by the BPRIM algorithm. The parameter e
determines the tradeoff between the shortest paths tree and the minimum
spanning tree; as e increases, the resulting tree increasingly reflects the
minimum spanning tree in terms of cost.

with radius approaching (1 + e) •R, but having small cost. On the other hand,

the BRBC approach, being more conservative, will yield a routing solution with

radius noticeably smaller than (1 + c) • il, at the expense of slightly larger tree

cost. Therefore, the BRBC algorithm will have a slightly shifted cost-radius

curve compared to the BPRIM algorithm. In practice, the asymptotic efficiency

of implementation and the provably good output would suggest choosing the

BRBC algorithm over BPRIM.

Tables 4.2 and 4.3 give the minimum, maximum and average radius perfor

mance ratios for T computed by BPRIM and its variants HI, H2, H3,

as well as Meta(BPRIM,Hl,H2,H3). The data shown represent averages of 500

cases generated from a uniform distribution in the unit square. The source node
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Figure 4.16: This chart illustrates the smooth tradeoff between tree cost
and tree radius produced by the BRBC algorithm. The envelope of per
formance lies between the shortest paths tree and the minimum spanning
tree, and the parameter e determines the exact tradeoff.

was selected to be one of the terminals at random. Note that the radius of the

Meta(BPRIM,Hl,H2,H3) solution may be larger than the radius produced by any

single method, because the meta-heuristic selects the lowest-cost tree.

Tables 4.4 and 4.5 give theminimum, maximum and average cost performance

ratios ^ computed by BPRIM and its variants HI, H2, H3, as well

as Meta(BPRIM,Hl,H2,H3). Again, the data represent averages of 500 random

cases, each with a randomly chosen source node.

Tables 4.6 and 4.7 show the cost and radius of Tbrbc and the SPT, as com

pared to the corresponding MST values. For each e value and net cardinality.
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Figure 4.17: This chart illustrates the smooth tradeoff between tree cost
and tree radius produced by the BRBC algorithm. The envelope of per
formance lies between the shortest paths tree and the minimum spanning
tree, and the parameter e determines the exact tradeoff.

50 random test cases were generated from a uniform distribution in the unit

square, and the minimum, average and maximum values computed. The/source

was selected to be one of the terminals at random.

Finally, Tables 4.8 and 4.9 show the cost and radius of Tbrbc^ and the

SPT, as compared to the corresponding KMB values. For each c value and net

cardinality, 50 test cases were generated, each with 15 randomly placed modules

and a randomly selected source. Routing was then performed in the induced

channel intersection graph.
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Figure 4.18: Aset of placed modules and their channel intersection graph.
The highlighted tree is the routing produced by the BRBC^ algorithm.

Figure 4.19: An example in the Manhattan plane where an HSPICE
simulation indicated that Tbrbc (middle) outperforms an MST (right)
by 81 picoseconds, and outperforms the SPT routing (left) by 414 pi
coseconds. The coordinates of the terminals are { (102,98), (147,153),
(202,202), (153,249), (53,147), (253,153), (153,52), (100,203), (200,103) },
and e = 1.5. The simulation assumes a generic CMOS design: MOSIS 2.0^
CMOS technology, layout normalized to a 1cm die, and 0.3pF capacitive
gate loading.
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BPRIM HI H2

e \N\ Min Ave Max Min Ave Max Min Ave Max

0.10 5 0.42 0.82 1.00 0.42 0.82 1.00 0.42 0.82 1.00

0.10 8 0.26 0.77 1.00 0.26 0.77 1.00 0.28 0.77 1.00

0.10 10 0.36 0.75 1.00 0.36 0.74 1.00 0.36 0.75 1.00

0.10 15 0.34 0.71 1.00 0.34 0.71 1.00 0.34 0.71 1.00

0.10 25 0.33 0.69 1.00 0.33 0.68 1.00 0.33 0.69 1.00

0.10 50 0.30 0.61 0.99 0.30 0.61 0.99 0.31 0.61 0.99

0.50 5 0.41 0.93 1.00 0.41 0.92 1.00 0.41 0.92 1.00

0.50 8 0.48 0.92 1.00 0.33 0.92 1.00 0.33 0.92 1.00

0.50 10 0.46 0.91 1.00 0.45 0.90 1.00 0.45 0.90 1.00

0.50 15 0.44 0.90 1.00 0.44 0.89 1.00 0.44 0.89 1.00

0.50 25 0.38 0.86 1.00 0.37 0.86 1.00 0.37 0.86 1.00

0.50 50 0.39 0.83 1.00 0.39 0.83 1.00 0.38 0.82 1.00

1.00 5 0.58 1.00 1.00 0.58 0.99 1.00 0.58 0.99 1.00

1.00 8 0.67 0.99 1.00 0.56 0.99 1.00 0.56 0.99 1.00

1.00 10 0.65 0.99 1.00 0.57 0.98 1.00 0.57 0.98 1.00

1.00 15 0.65 0.98 1.00 0.54 0.98 1.00 0.54 0.97 1.00

1.00 25 0.48 0.98 1.00 0.48 0.97 1.00 0.48 0.97 1.00

1.00 50 0.53 0.95 1.00 0.53 0.94 1.00 0.53 0.94 1.00

2.00 5 1.00 1.00 1.00 1.00 1.00 1.00 0.69 1.00 1.00

2.00 8 0.86 1.00 1.00 0.80 1.00 1.00 0.67 1.00 1.00

2.00 10 0.96 1.00 1.00 0.96 1.00 1.00 0.78 1.00 1.00

2.00 15 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00

2.00 25 0.84 1.00 1.00 0.84 1.00 1.00 0.81 1.00 1.00

2.00 50 0.82 1.00 1.00 0.82 1.00 1.00 0.78 1.00 1.00

Table 4.2: Minimum, average and maximum radius ratios for various val
ues of e, expressed as a fraction of MST radius.
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H3 Meta

€ \N\ Min Ave Max Min Ave Max

0.10 5 0.42 0.82 1.00 0.42 0.82 1.00

0.10 8 0.28 0.77 1.00 0.28 0.77 1.00

0.10 10 0.36 0.75 1.00 0.36 0.75 1.00

0.10 15 0.34 0.71 1.00 0.34 0.71 1.00

0.10 25 0.32 0.69 1,00 0.32 0.69 1.00

0.10 50 0.30 0.61 0.99 0.30 0.61 0.99

0.50 5 0.41 0.92 1.00 0.41 0.92 1.00

0.50 8 0.44 0.92 1.00 0.44 0.92 1.00

0.50 10 0.48 0.90 1.00 0.48 0.90 1.00

0.50 15 0.41 0.89 1.31 0.41 0.89 1.31

0.50 25 0.37 0.86 1.07 0.37 0.86 1.07

0.50 50 0.39 0.82 1.04 0.39 0.82 1.04

1.00 5 0.58 0.99 1.00 0.58 0.99 1.00

1.00 8 0.53 0.99 1.00 0.53 0.99 1.00

1.00 10 0.57 0.98 1.00 0.57 0.98 1.00

1.00 15 0.54 0.97 1.06 0.54 0.97 1.06

1.00 25 0.46 0.97 1.10 0.46 0.97 1.10

1.00 50 0.53 0.94 1.06 0.53 0.94 1.06

2.00 5 0.69 1.00 1.00 0.69 1.00 1.00

2.00 8 0.67 1.00 1.00 0.67 1.00 1.00

2.00 10 0.78 1.00 1.18 0.78 1.00 1.18

2.00 15 0.85 1.00 1.10 0.85 1.00 1.10

2.00 25 0.69 1.00 1.26 0.69 1.00 1.26

2.00 50 0.58 0.99 1.16 0.58 0.99 1.16

Table 4.3: Minimum, average and maximum radius ratios for various val
ues of e, expressed as a fraction of MST radius (continued).
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BPRIM HI H2

€ \N\ Min Ave Max Min Ave Max Min Ave Max

0.10 5 1.00 1.17 2.22 1.00 '1.17 2.22 1.00 1.17 2.22

0.10 8 1.00 1.25 2.20 1.00 1.23 1.94 1.00 1.22 2.26

0.10 10 1.00 1.28 2.33 1.00 1.26 2.33 1.00 1.25 2.18

0.10 15 1.00 1.39 2.79 1.00 1.32 2.77 1.00 1.28 2.53

0.10 25 1.00 1.53 2.71 1.00 1.39 2.45 1.00 1.33 2.30

0.10 50 1.00 1.92 3.49 1.00 1.52 2.91 1.00 1.41 2.92

0.50 5 1.00 1.05 1.60 1.00 1.04 1.56 1.00 1.04 1.56

0.50 8 1.00 1.07 1.97 1.00 1.05 1.59 1.00 1.05 1.59

0.50 10 1.00 1.09 1.73 1.00 1.06 1.59 1.00 1.06 1.59

0.50 15 1.00 1.13 2.08 1.00 1.08 1.60 1.00 1.06 1.53

0.50 25 1.00 1.21 2.91 1.00 1.10 1.97 1.00 1.08 1.88

0.50 50 1.00 1.40 3.67 1.00 1.15 1.93 1.00 1.10 1.75

1.00 5 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27

1.00 8 1.00 1.01 1.73 1.00 1.01 1.54 1.00 1.01 1.54

1.00 10 1.00 1.02 1.47 1.00 1.01 1.32 1.00 1.01 1.31

1.00 15 1.00 1.03 1.79 1.00 1.02 1.30 1.00 1.01 1.30

1.00 25 1.00 1.04 2.38 1.00 1.02 1.39 1.00 1.01 1.37

1.00 50 1.00 1.13 2.66 1.00 1.04 1.71 1.00 1.03 1.47

2.00 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.00 8 1.00 1.00 1.34 1.00 1.00 1.07 1.00 1.00 1.07

2.00 10 1.00 1.00 1.08 1.00 1.00 1.08 1.00 1.00 1.08

2.00 15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.00 25 1.00 1.00 1.39 1.00 1.00 1.14 1.00 1.00 1.14

2.00 50 1.00 1.00 1.71 1.00 1.00 1.13 1.00 1.00 1.11

Table 4.4: Minimum, average and maximum cost ratios for various values
of e, expressed as a fraction of MST cost.
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H3 Meta

€ \N\ Min Ave Max Min Ave Majc

0.10 5 1.00 1.16 2.22 1.00 1.16 2.22

0.10 8 1.00 1.20 2.26 1.00 1.20 1.94

0.10 10 1.00 1.23 2.18 1.00 1.22 2.18

0.10 15 1.00 1.25 2.28 1.00 1.23 2.28

0.10 25 1.00 1.28 2.16 1.00 1.25 2.00

0.10 50 1.00 1.33 2.22 LOO 1.30 2.22

0.50 5 1.00 1.04 1.56 1.00 1.04 1.56

0.50 8 1.00 1.04 1.84 1.00 1.04 1.59

0.50 10 1.00 1.05 1.59 1.00 1.05 1.59

0.50 15 1.00 1.05 1.53 1.00 1.05 1.53

0.50 25 1.00 1.05 1.72 1.00 1.05 1.72

0.50 50 1.00 1.06 1.77 1.00 1.06 1.74

1.00 5 1.00 1.00 1.27 1.00 1.00 1.27

1.00 8 1.00 1.01 1.54 1.00 1.01 1.54

1.00 10 1.00 1.01 1.31 1.00 1.01 1.31

1.00 15 1.00 1.01 1.30 1.00 1.01 1.30

1.00 25 1.00 1.01 1.33 1.00 1.01 1.33

1.00 50 1.00 1.02 1.31 1.00 1.02 1.31

2.00 5 1.00 1.00 1.00 1.00 1.00 1.00

2.00 8 1.00 1.00 1.07 1.00 1.00 1.07

2.00 10 1.00 1.00 1.08 1.00 1.00 1.08

2.00 15 1.00 1.00 1.00 1.00 1.00 1.00

2.00 25 1.00 LOO 1.09 LOO 1.00 1.09

2.00 50 1.00 1.00 1.11 1.00 1.00 1.09

Table 4.5; Minimum, average and maximum cost ratios for various values
of e, expressed as a fraction of MST cost (continued).
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r [Tbrbc) r{SPT)

€ \N\ Min Ave Max Min Ave Max

0.10 5 0.44 0.82 1.00 0.44 0.81 1.00

0.10 8 0.43 0.74 1.00 0.43 0.74 1.00

0.10 10 0.38 0.71 1.00 0.38 0.70 1.00

0.10 15 0^27 0.65 1.00 0.27 0.65 1.00

0.10 25 0.34 0.64 0.94 0.34 0.63 0.93

0.50 5 0.57 0.90 1.00 0.47 0.85 1.00

0.50 8 0.48 0.74 0.99 0.46 0.69 0.99

0.50 10 0.42 0.81 1.00 0.37 0.75 1.00

0.50 15 0.44 0.72 0.99 0.42 0.69 0.99

0.50 25 0.33 0.66 0.97 0.31 0.63 0.97

1.00 5 0.66 0.95 1.00 0.56 0.83 1.00

1.00 8 0.56 0.84 1.00 0.44 0.74 0.95

1.00 10 0.51 0.81 1.00 0.50 0.73 1.00

1.00 15 0.44 0.73 1.00 0.30 0.66 0.97

1.00 25 0.32 0.66 0.99 0.31 0.61 0.93

2.00 5 0.84 0.99 1.00 0.50 0.78 1.00

2.00 8 0.47 0.93 1.00 0.40 0.72 0.94

2.00 10 0.51 0.86 1.00 0.38 0.69 1.00

2.00 15 0.48 0.86 1.00 0.35 0.69 1.00

2.00 25 0.36 0.74 1.00 0.23 0.60 1.00

Table 4.6: Tbrbc and SPT radius statistics for random nets, expressed as
a fraction of the MST radius.
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cost{TBRBc) cost{SPT)

6 \N\ Min Ave Max Min Ave Max

0.10 5 1.00 1.25 1.84 1.00 1.30 1.96

0.10 8 1.03 1.35 1.99 1.03 1.41 1.99

0.10 10 1.00 1.39 1.96 1.05 1.45 2.25

0.10 15 1.20 1.53 2.66 1.20 1.60 2.71

0.10 25 1.25 1.57 2.03 1.25 1.66 2.16

0.50 5 1.00 1.15 1.60 1.00 1.25 2.04

0.50 8 1.00 1.22 1.66 1.02 1.37 1.94

0.50 10 1.00 1.23 1.57 1.02 1.45 2.05

0.50 15 1.11 1.29 1.53 1.13 1.54 1.94

0.50 25 1.17 1.34 1.73 1.32 1.60 2.14

1.00 5 1.00 1.03 1.30 1.00 1.22 1.90

1.00 8 1.00 1.11 1.31 1.12 1.37 1.96

1.00 10 1.00 1.13 1.47 1.03 1.45 1.96

1.00 15 1.00 1.19 1.41 1.14 1.61 2.28

1.00 25 1.11 1.25 1.43 1.37 1.71 2.38

2.00 5 1.00 1.01 1.15 1.00 1.30 2.03

2.00 8 1.00 1.05 1.22 1.03 1.48 2.06

2.00 10 1.00 1.07 1.23 1.10 1.50 2.28

2.00 15 1.00 1.08 1.19 1.18 1.49 1.95

2.00 25 1.01 1.12 1.27 1.25 1.68 2.31

Table 4.7: Tbrbc and SPT cost statistics for random nets, expressed as a
fraction of the MST cost.

131



riTBRBCjs) riSPT)
€ \N\ Min Ave Max Min Ave Max

0.10 3 0.63 0.93 1.00 0.63 0.93 1.00

0.10 4 0.50 0.90 1.00 0.50 0.90 1.00

0.10 5 0.43 0.84 1.00 0.43 0.84 1.00

0.10 7 0.42 0.82 1.00 0.42 0.82 1.00

0.10 10 0.51 0.82 1.00 0.51 0.82 1.00

0.10 15 0.31 0.81 1.00 0.31 0.80 1.00

0.50 3 0.60 0.94 1.00 0.60 0.94 1.00

0.50 4 0.55 0.88 1.00 0.52 0.86 1.00

0.50 5 0.43 0.89 1.00 0.43 0.87 1.00

0.50 7 0.48 0.86 1.00 0.45 0.82 1.00

0.50 10 0.42 0.80 1.00 0.42 0.77 1.00

0.50 15 0.40 0.78 1.00 0.40 0.75 1.00

1.00 3 0.65 0.99 1.00 0.57 0.93 1.00

1.00 4 0.64 0.99 1.00 0.54 0.91 1.00

1.00 5 0.67 0.95 1.00 0.48 0.86 1.00

1.00 7 0.55 0.92 1.00 0.55 0.84 1.00

1.00 10 0.53 0.90 1.00 0.47 0.81 1.00

1.00 15 0.47 0.85 1.00 0.47 0.78 1.00

2.00 3 1.00 1.00 1.00 0.62 0.92 1.00

2.00 4 0.71 0.99 1.00 0.55 0.89 1.00

2.00 5 0.61 0.99 1.00 0.59 0.85 1.00

2.00 7 0.49 0.97 1.00 0.43 0.80 1.00

2.00 10 0.49 0.93 1.00 0.45 0.81 1.00

2.00 15 0.46 0.88 1.00 0.45 0.76 1.00

Table 4.8: Tbrbcs and SPT radius statistics for random block designs,
expressed as a fraction of the KMB tree radius.
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COSt{TBRBCjs) cost{SPT)
6 \N\ Min Ave Max Min Ave Max

0.10 3 0.91 1.12 1.42 0.91 1.12 1.42

0.10 4 0.96 1.14 1.69 0.96 1.14 1.69

0.10 5 0.99 1.17 1.51 0.99 1.18 1.57

0.10 7 0.99 1.14 1.45 0.99 1.15 1.47

0.10 10 1.00 1.22 1.58 1.00 1.22 1.58

0.10 15 1.02 1.21 1.53 1.02 1.22 1.53

0.50 3 0.89 1.09 1.57 1.00 1.14 1.61

0.50 4 0.98 1.11 1.43 1.00 1.16 1.51

0.50 5 0.97 1.15 1.68 0.97 1.23 1.61

0.50 7 0.96 1.11 1.41 0.96 1.20 1.61

0.50 10 0.98 1.17 1.50 1.00 1.27 1.58

0.50 15 0.96 1.15 1.41 0.96 1.19 1.51

1.00 3 0.89 1.02 1.27 0.89 1.14 1.72

1.00 4 0.97 1.02 1.19 1.00 1.15 1.71

1.00 5 1.00 1.09 1.38 1.00 1.23 1.87

1.00 7 1.00 1.09 1.37 1.00 1.21 1.58

1.00 10 0.96 1.10 1.32 1.01 1.22 1.69

1.00 15 0.98 1.11 1.30 0.97 1.21 1.71

2.00 3 1.00 1.00 1.00 1.00 1.13 1.51

2.00 4 0.92 1.01 1.26 0.92 1.15 1.59

2.00 5 1.00 1.02 1.23 1.00 1.19 1.64

2.00 7 0.95 1.03 1.22 0.97 1.22 1.59

2.00 10 1.00 1.05 1.25 1.02 1.26 1.75

2.00 15 0.99 1.06 1.21 1.06 1.25 1.49

Table 4.9: Tbrbc^ and SPT cost statistics for random block designs,
expressed as a fraction of the KMB tree cost.
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4.8 Remarks and Extensions

We have proposed a new bounded-radius minimum spanning tree formulation,

withour discussion focusing on applications to VLSI global routing. An effective

method, called BPRIM, based on an analog of Prim's minimum spanning tree

construction was given. Furthermore, we have also proposed a provably good

general algorithm for bounded-radius tree construction. This method is based

on a routing tree construction which in some sense melds the notions of shortest

paths tree and minimum spanning tree, and whichachieves a solution having both

cost and radius bounded by constant factors away from optimal.® Our approach

readily extends to Steiner tree routing in arbitrary weighted graphs, where again

the routing tree is only a small constant factor away from optimal in terms of

both cost and radius. Extensive simulations confirm that our approach gives

good performance: the results of Section 4.7 indeed exhibit a smooth tradeoff

between the competing requirements of small radius and low tree cost.

Based on our methods for constructing bounded-radius trees, a global routing

procedure may work as follows. We route all nets, one by one, according to their

priorities. For each net, we construct a bounded-radius minimum spanning tree or

bounded-radius minimum Steiner tree using the algorithms presented in Sections

4.4 and 4.5. The parameter e is either given by the user or computed based on an

estimation of the timing constraints for the net. As noted in Section 4.6, different

values e, can be used within a single net to reflect varying timing constraints

®Recently, Hu et al. [HHK92] have developed an explicit tradeoff between the Dijkstra
(SPT) and Prim (MST) constructions, based on the observation that the respective dynamic
programming recurrences mm + <^7*!] and mm min[djifc] are very similar. In particular,

the SPT-MST tradeoff is achieved using the recurrence mm min[c•II + dyt] with 0 < c < 1,

and this has been found to yield somewhat improved results over the BRBC method.
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for distinct various input-output paths, or an even stronger constraint may be

satisfied, where different pathlength bounds Ri are imposed for each terminal

n,- (e.g., given the output from a timing-driven placement tool such as RITUAL

[SCK91b]). The costofeachedgein the routinggraph is a functionofwirelengths,

channel capacities, and the distribution of current channel densities. Following

the routing of each net, we update the edge costs in the routing graph. After

all nets are routed, we may compute the timing-critical paths and, if necessary,

further reduce the interconnection delay by re-routing some critical nets based

on more accurate distributed RC delay models.

Our algorithms readily extend to other norms and to alternate geometries

(e.g., 45- or 30-60-90-degree routing regimes). There are several remaining open

problems, such as the complexity of computing the minimum-cost bounded-radius

spanning tree in the Manhattan plane, or the complexity of choosing an MST

with minimum radius when the MST is not unique.
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CHAPTER 5

Verifying Interconnections

5.1 Introduction

In the last three chapters, we have proposed methods for constructing tree topolo

gies which optimize various objectives. In this chapter, we will focus on how to

efficiently test a tree once it has been constructed. This is a very general prob

lem that arises in, e.g., communication networks and distributed computation.

However, we will couch our discussion within the framework of multi-chip mod

ule (MCM) substrate testing, a currently active area of study and motivating

application for this work.

MCM technology has recently emerged as an economically viable means of

packaging complex, high-performance systems [BMH89] [Dai91] [Her90] [Sha91]

TD91] [Web89]. A typical MCM consists of a substrate containing inter-chip

wiring, upon which axe mounted a number of bare die (see Figure 5.1). The

increased use of multi-chip module packaging has highlighted several new and

challenging CAD problems in such areas as layout, thermal reliability, and test

ing [GWR90] [Sha91]. Testing in particular presents one of the most persistent

challenges of the MCM approach [BGS91] [Her90] [Web89]. It is desirable to

discover defects in the MCM substrate as early as possible, since the cost of lo

cating and fixing a system fault increases significantly with each successive stage
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of the system manufacturing and marketing process. While the fully assembled

MCM package can be tested using combinatorial IC testing techniques, the pre-

assembly MCM substrate contains only disjoint wiring connections with no active

devices; thus, the substrate cannot be tested using conventional methods.

die die

die

Figure 5.1: An example of a multi-chip module, showing the underlying
substrate containing the interconnect, as well as several mounted dice.

Our model of MCM substrate interconnect is as follows. Each signal net is

routed on multiple routing layers using a tree topology, where we assume without

loss of generality that each leaf is a net terminal, each edge is a wire segment

on a single wiring layer, and each internal node is a via between two or more

routing layers (Figure 5.2). We wish to verify that the routing topology of each

net is properly implemented, with no faults. For technological reasons detailed

in [KRW91b] [KRW92], it is sufficient to test for so-called open faults}

An open fault is an electrical disconnection between two points that are to

be connected. As will be discussed in Section 5.2 below, two types of open faults

^Probes whichare designed to detect open faults are also able to detect short faults and high-
resistance faults by comparing the measured resistance and capacitance valuesto the expected
ones.
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IL3I

VI

V2
-0

Figure 5.2: A sample net (left) and its corresponding tree representation
(right); pins become leaf nodes while vias become internal nodes.

can arise in the routing tree: wire opens, which we term edge faults, and cracked

vias, which we term node faults. Node faults correspond to a physical form of

node failure that can arbitrarily disconnect subtrees and which is not necessarily

detected when we test for edge faults.

In the manufacture of digital systems, traditional methods for connectivity

checking involve either parallel probing of the circuit under test, or combinatorial

exercising of the logic, neither of which can be used for MCM substrate testing

BMH89]. In verifying connectivity for PCBs, a bed-of-nails tester will simulta

neously access every grid point, yielding an efficient, parallel checking procedure.

However, this cannot be applied to MCMs since feature sizes are too small to al

low use of such a grid-based methodology. A combinatorial testing approach such

as the boundary-scan method for hierarchical design [Gro88] [WMM89] requires

system-specific, built-in test circuitry. As noted above, combinatorial testing in

general applies only to a completely assembled MCM; it is not applicable to

substrates which contain isolated interconnect with no active circuit elements.

Given this failure of traditional methods, MCM substrate testing is currently

accomplished on a net-by-net basis via a sequential net-by-net methodology. Sev

eral groups have used electron-beammethods to test MCM substrates [GWR90],
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but this can be prohibitively slow [SSB91]. All other sequential probing ap

proaches involve variants of fc-probe testing, where k "flying" probe heads simul

taneously move around the circuit, measuring resistance and capacitance values

to determine the existence of faults. Formally, we define a k-probe to be the

simultaneous visitation of k distinct terminals by the k probe heads.^ A single

A:-probe simultaneously verifies all paths between pairs of terminals in the probe

set. In particular, when k = 2 the unique path between the two visited terminals

is checked.

A sequential testing approach using 2-probes was developed by Crowell et

al. [CKC84] [McW91], but could not guarantee detection of all open faults.

Because the economics of system reliability dictate that complete fault coverage

be achieved, Yao et al. [YCC91] recently proposed an algorithm that determines

a minimum set of 2-probes which checks for all possible faults. In this chapter,

wegive a linear-time algorithm whichfor any fc > 2 determines a fe-probe set that

accomplishes complete fault coverage of any net. The number of probes used by

our method is the minimum possible.

Once probes are found which adequately test all nets for faults, the probes

must be scheduled for execution on the test apparatus. Previous groups [CKC84

[YCC91] have used generic grdedy or iterative traveling salesman heuristics to

attack this problem. We propose two effective heuristics for probe scheduling

ba.sed on new observations concerning the metricity and allowable structure of

the probe set. Empirical results demonstrate reductions in testing cost of up to

21% over the best previous method [YCC91].

The remainder of this chapter is organized as follows. In Section 5.2, we for-

2Current probe technology generally uses fc = 2, but probe machines with higher values of
k are currently under development [Rus91].
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mulate open fault detection as a tree testing problem, then present linear-time

algorithms which find an optimal number of probes to cover all possible open

faults. Section 5.3 shows that probe scheduling to minimize total travel time

is a form of metric traveling salesman problem (TSP); we present two effective

heuristics, one of which has small constant-factor error bound. Section 5.4 gives

experimental results on both random and industry circuit benchmarks, and Sec

tion 5.5 concludes with directions for future research.

5.2 Fault Detection

In this section we address the case k = 2 of the following problem:

The Minimal Probe Generation (MPG) Problem: Given a tree with I

leaves (i.e., pins), determine a minimum set of A;-probes needed to verify that the

tree contains no faults.

We consider two levels of fault coverage: (i) coverage of all edge faults, and

(ii) coverage of all node faults in addition to all edge faults (see below). This

section presents optimal solutions for the two corresponding versions of the MPG

problem.

5.2.1 Optimal Detection of Edge Faults

In order to test the integrity of all tree edges, certainly every edge which is

incident to a leaf must be tested. Thus, the number of leaves I in the routing

topology induces a lower bound of [5] probes when k = 2. Our probe generation

algorithm PROBEl orders the leaves of a tree as pi,... ,p/ using an arbitrary in-

order traversal of the tree. Choosing the [|J probes 1 < i < [|J, will
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cover all edges of the tree, as illustrated in Figure 5.3. If I is odd, an additional

probe {pi,pi} is generated. Figure 5.4 gives the formal algorithm statement.

Probes

Figure 5.3: Selecting a minimal set of probes to detect the existence of
any edge faults. The probes 1 < i < [|J, provide complete
edge fault coverage.

PROBEl: Optimal probe set generator for edge fault detection

Input: A tree with I leaves

Output: A minimum set of probes for detecting all edge faults

Root the tree arbitrarily at an internal node

Induce an in-order labeling of the leaves
Output the probes 1 < i < L2J

If I is odd Then Output the probe {pi,p/}

Figure 5.4: PROBEl: Optimal detection of all edge faults.

Theorem 5.1 Given a tree with I leaves, 2-probes are both necessary and

sufficient for complete edge fault testing.
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Proof: A graph is bridge connected if every edge lies on some simple (i.e., vertex-

disjoint) cycle. Starting with the original tree, for each probe we add into the

graph an edge connecting the two leaves tested by the probe. A set of probes is

sufficient to test for all edge faults if and only if it induces a bridge connected

graph, since each edge will thus lie on some cycle and be tested by the probe that

formed that cycle. In order to convert a tree into a bridge connected graph via

the addition of a minirnum number of new edges, it suffices to add the new

edges for all 1 < i < [|J, where pi,...,pi is the sequence of leaves in

any in-order traversal of the tree (when I is odd, the additional edge {pi,pi} is

used as well).

Figure 5.5: PROBEl checks each edge e = for a fault using a
probe which forms a simple cycle containing e, as shown.
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To see that every edge in the resulting graph G = {V,E) lies on some simple

cycle, observe that for every proper subtree in the original tree, there exists an

edge in G connecting one of the leaves of that subtree to a leaf not in that

subtree. Given an arbitrary edge e = {u,-, Uj'} in the original tree (Figure 5.5),

where u,- is the father of u,/, one simple cycle that surely contains the edge e is

u,/,... ,Vj,Vk,...,Vm,...,Vi,Vi' where (i) vj is any leaf in the subtree T" rooted

at Vii such that Vj is connected by a probe edge to a leaf Vk not in T', and (ii) Vm

is the lowest common ancestor of both v,- and Vk. To prove that nodes vj and Vk

must exist, assume toward a contradiction that every leaf vji in T' is connected

by a probe edge to Vk' which is also in T'. Because of the in-order labeling, leaves

and are also in T'. Our assumption that all probes involving leaves

of T' are internal to T' then implies that vi must also be in T', along with vi

when I is even or u/_i when I is odd. In the case where I is even, T' will contain

all leaves of the input tree topology, contradicting the fact that T' is a proper

subtree of the topology. For / odd, the probe which tests the sole leaf vi not

in T' must connect vi to a leaf in T', contradicting the assumption that probes

involving leaves in T' are internal to T'. •

5.2.2 Optimal Detection of Node Faults

In manufacturing the MCM substrate, a via can physically "crack" due to such

factors as misalignment in lithography or thermal stress (see Figure5.6) [YCC91].

In other words, subtrees rooted at an internal "cracked" node of the net can

become electrically separated, so that certain sets of probes may detect this node

fault, while other sets will fail to find the cracked node. This section gives a

linear-time algorithm, called PR0BE2, that finds a minimum probe set which
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completely tests for both edge faults and node faults.

Layer 1

Layer 2

Cracked
via

Figure 5.6: A cracked via, i.e., node fault, in a routing. Top: the two
routing layers are depicted using different shadings, while the cracked via
which disconnects the circuit is depicted in black. Bottom: the equivalent
tree representation. Note that the two probes (A,B) and (C, D) do not
detect the node fault.

PR0BE2 begins by rooting the tree at an internal node R of maximumdegree

d and then orienting all edges towards R. The algorithm then continueswith each

leaf node sending to its parent a message list containing its label. When a given

node has received message lists from all of its children, it iteratively generates

probes bypairing labels from distinct incoming lists, at leastoneofwhich contains

more than one node label; when the sum total of remaining labels at that node

has been reduced to less than c/+l, all remaining labels are concatenated and sent

to the node's parent. This process is repeated at each node until only the root R

remains unprocessed, where a simple cleanup step is then performed. Figure 5.7

traces the execution of PR0BE2 on a small example, while Figure 5.8 gives the
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formal statement of PR0BE2.

Figure 5.7: A sample run of PR0BE2 on a tree containing 9 leaves and 5
internal nodes; a total of 5 probes are generated (thick axes).

Theorem 5.2 Given a tree, PR0BE2 generates a set of probes which completely

tests for all edge and node faults.

Proof: By induction on the number of leaves in the tree.

Basis: Any tree of depth one is fully tested by PR0BE2, since in that case we
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PROBE2: Optimal probe set generator

Input: A tree {V,E)
Output: A minimal probe set (for edge faults and node faults)

Let W = V

Root tree at internal node R^W oi max degree d

Direct all edges towards R

Each leaf node v sends the message {w} to parent{v)
While 3v eW, V^ R having received messages Mi,

While > d and 3i ^ \Mi\ > 2
Let X € Mi

Let y € Mj for some j ^ i, \Mj\ > 1
Generate probe

Mi = Mi- {x} ; Mj = Mj - {y}
Let L = Ml U... UMdeg(v)-i
Send L to parent{v)
W = W-{v}

/* now W = {R} has received messages Mi, ...,Md from its children */
While 3i,j, 1 < i,j < d, i ^ j such that |M,| > 2, \Mj\ > 1

Reorder Mi,...,Mj such that |Mj| > |M,+i| for aU 1 < i < d
Let A: < d be as small as possible such that \Mk\ > 0
Let X € Ml, y e Mk

Generate probe {x,3/}
Ml = Ml - {x} •,Mk^Mk- {y}

Let L = Ml U ... U Md

If jX] > 1 Then generate probes {ii, £,} V2 < i < |il and terminate
Else Choose u G V 3 v, Li were not passed by same child

Generate probe { Xi,v} and terminate

Figure 5.8: PROBE2: Optimal detection of edge and node faults.

test one leaf with all others.

Induction: Assuming that our algorithm completely tests any tree with k leaves,

we show that it also completely tests any tree with fc + 2 leaves. Let T be a tree

with A: + 2 leaves and let h and h be the first leaves paired together to generate a

probe when weapply PR0BE2 to T. Let T' be the tree with k leaves whichresults
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when we remove h and I2 from T. Let v be the internal node whose message lists

we are examining when we generate the probe {/i, /2}- After generating the probe

{li,I2}, the message lists at v are precisely those that arrive at v' (the node in T'

that corresponds to u in T), and so the rest of the execution of PR0BE2 on T is
r

the same as the execution of PR0BE2 on T'. Since v is the first node at which

we generate a probe, it must be the case that just before h and I2 are matched,

the message lists at v contain the names of all leaves which are descendants of v.

When h and I2 are removed, the new lists contain the names of all descendants

of v' and so PR0BE2 proceeds as for the tree T' with k leaves. Clearly our probe

sequence will test that h and I2 are connected, and the continuation of PR0BE2

on T' will generate a probe sequence which tests that T' is connected. Therefore,

we need only show that the connectivity between h and T' is also tested. If u is

not the parent of both li and I2, then some edge on the path from h to I2 in T

coincides with an edge of T'. Since the mutual connectivity of all edges on this

path is tested, by transitivity the connection of all of these edges to T' is also

tested. Conversely, suppose v is the parent of both l\ and l2- Both l\ and I2 pass

to Vmessage lists of length one, but the only time we generate a probe from two

singleton message lists is at the root when all message lists have length one, and

this can occur only as part of the basis case.

Note that while our induction is on the number of leaves in the tree, every

tree with more than one leaf can be built from the basis case. There is only one

tree with two leaves: the tree with a root and two leaves at depth one. There

are two possible trees with three leaves: the tree with a root and three leaves at

depth one; and the tree with a root which has one leaf child at depth one, and

one internal node at depth one, which in turn has two children which are leaves
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at depth two. Of these three trees, only the last does not fit the basis case, but

it will after one more probe is generated. Any other tree with two or three leaves

will never be given as input to the algorithm since its root will not have maximum

degree and will not arise during the induction since that would violate Lemma

5.9 below. •

We now use a sequence of lemmas to prove that PR0BE2 uses the minimum

possible number of probes.

Lemma 5.3 A node of degret d requires d—l probes to test whether it is cracked.

Proof: Testing an internal node for "cracks" using 2-probes is equivalent to

connecting a set of d vertices by edges until a single tree connects all the vertices.

The result follows immediately since a tree with d vertices contains exactly d—l

edges. •

Lemma 5.4 No node passes up more than d leaf names in its message list.

Proof: By induction on the maximum distance from a node to any one of its

leaves.

Basis: If the distance is zero then the node is a leaf and passes up one name in

its message list.

Induction: Suppose the node does send up a message list containing more than

d leaf names. Since by the induction hypothesis each child of the node sent up

at most d leaf names, the propagated leaf names must come from the message

lists of two or more children. But under such conditions, the algorithm will

generate probes using leaf names from different message lists until either each

child's message list has length one, or the total message count is d or less. In the
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first case, since the node received messages from at most d —\ children, it can

send up a message list of length at most d—l. In the second case, the node sends

up a list of length at most d. g

Lemma 5.5 No internal node passes up fewer than d—l leaf names in its mes

sage list, unless the list contains the names of all leaves that are descendants of

that node.

Proof: By induction on the maximum distance from a node to any one of its

leaves.

Basis: If the distance is zero then the node is a leaf and it passes up the message

list containing its name.

Induction: Suppose a node passes up k leaf names where k < d—l, but that the

node has t descendants where t > k. Since k < d —1, no probes could have been

generated at that node, and k must be the sum of the lengths of all message lists

sent by the node's children. Each of these children must have sent lists of length

no greater than k, and so by the induction hypothesis, each must have sent lists

containing all their leaf descendants. The union of these lists is precisely the list

of the descendants of the node, and so we have a contradiction. •

Lemma 5.6 If any combination of 2{d —1) or more leaf names are present

among d non-empty message lists at the root node, and the difference in length

between the longest two message lists is no more than d—l, then either all leaf

names appear in the probe sequence exactly once, or else one leaf name appears

twice and all others appear once.

Proof: By induction on d.

Basis: d = 2. There are two message lists. If they both have the same length,
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then they are completely matched with each other and no leaf names are re

peated. If one list has length one more than the length of the other, then some

leaf will need to appear a second time in order to match the single leaf remaining

after all the matches have been made.

Induction: Matches at the root are made by the algorithm until one of the incom

ing message lists has length one. At this point there are at least 2{d—1) leaves

distributed among the message lists. The next match leaves d —\ non-empty

message lists. The difference in lengths between the two longest message lists has

decreased by one unless these lengths were already equal. The total number of

leaves remaining is at least 2{d —1 —1) among d —\ lists. We then invoke the

induction hypothesis for c? —1. •

Lemma 5.7 If any combination of 2{d —1) —k leaf names is present among

d non-empty message lists at the root node, then exactly one of the leaf names

generated in the probe sequence will appear A: -1- 1 times in the generated probe

sequence, and every other leaf name will appear exactly once.

Proof: By induction on d.

Basis: \i d = 2 and k = 0 then we have two singleton lists, and we match them

together without duplicating any leaves.

Induction: If there exists any message list with length greater than one, we match

it with a list of length one and invoke the induction hypothesis. (There must be

a list of length one, else we would have 2{d —1) or more leaf names present.) If

no list has length greater than one, then 2{d —l) —k = d,OTd = k + 2. We then

must use one of the leaves d —I = k -{• 1 times. •
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Lemma 5.8 If k > 0 and 2(d —1) —A: leaf names arrive at the root, then there

are exactly 2{d —1) —k leaves in the tree.

Proof: Suppose that at least one childof the root sent up a message list of length

c? —1 or more. There are d — \ other children, each of which must have sent at

least one leaf name. This would imply a total of at least 2{d —I) leaf names at

the root, which is too many; hence, no child of the root sent up c? - 1 leaf names.

Applying Lemma5.5, we find that all leafdescendants of the root must appear in

the message lists received by the root, and so there must be exactly 2{d —1) —k

leaves in the tree. •

Lemma 5.9 No child of the root is left with a message list of length greater than

one when all other lists have reached length zero.

Proof: Suppose that when we reach the PR0BE2 step "Let L = Mil).. .U Md"

we have V = {R} and that one of the M,'s has length \Mi\ > 1. There must be

only one such M,, else we would have continued to generate probes. Consider

the last d —I probes generated: each must have taken one element from Mi, and

Mi must always have been the maximum-length message list at the root since no

other Mj has length within one of A/,-. Hence, Mi must have started with length

d+ I, but Lemma 5.4 guarantees that this is impossible.

Theorem 5.10 PR0BE2 generates the minimum number ofprobes which achieves

complete edge and node fault testing.

Proof: Let / be the number of leaves in the tree. If 2{d —1) or more leaf nances

arrive at the root, then by Lemma 5.6, we have either / or / + 1 leaf names used

in the sequence of probes; this will be optimal since every leafname must appear
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in at least one probe, or else not all edges would have been tested. If 2{d—l) —k

leaf names arrive at the root, then by Lemma 5.8 we have I = 2(d —I) —k, and

by Lemma 5.7 the sequence of probes contains l + k = 2{d—1) leaf names. There

are then d—1 probes, which is optimal by Lemma5.3. •

Except at the root, each probe generated by PR0BE2 will remove two distinct

leaf names from the messages (i.e., lists of leaf names) being passed. At most

d leaf names will remain to be processed at the root, requiring at most d—1

additional probes. Therefore, to test an /-pin net the number of probes that

our algorithm generates is bounded by + {d —1) = 5 + 2*"^' bound

is optimal and is tight for a star topology (which is theoretically possible given

the multi-layer interconnect). Each node v passes no more than d leaf names up

to its parent, and thus each node will receive fewer than <P leaf names from its

children. Assuming that dis &constant dependent on technology, the amount of

processing at each node is a constant, and since each node is processed only once,

the overall time complexity of PR0BE2 is linear in the size of the tree, which is

clearly optimal.

5.3 Efficient Probe Scheduling

As noted above, efl&cient probe scheduling algorithms are necessary because test

ing cost islargely dependent on thetotaltravel time oftheprobe heads. Typically,

individual steppermotors will control the x— and y—coordinates of each moving

probe head, and we say that the distance traveled by the i"" probe head is given

by

dist{AuBi) = max[ \Ai^ - BiJ , [Ai,, - ].
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This distance function, which is simply the Chebyshev or Loo norm, reflects

the fact that the maximum time interval for which any motor is engaged will

determine the delay between consecutive probes; this distance measure is typical

in manufacturing applications and is quite accurate despite second-order effects

such as acceleration and deceleration of the moving heads. For A:-probes with

k = 2, the cost ofmoving the probe heads from a set ofpinlocations A = {Ai,A2}

to another set of locations B = {Bi,B2} is given by

c{A, B) = mm{max[dist{Ai, Bi), dist{A2, B2)],max[dist{Ai, B2), dist{A2, Bi)]}

More generally, for A; > 2the cost of moving the probe heads from A= {Ai,..., Ak}

to B = {5i,..., Bfc} is given by

c{A,B) = mm max[dist{Ai,B^(i)) , dist{A2,Bc{2)) , ••• , dist{Ak,BtT{k))]

where {<t} denotes the set of all permutations of the probe indices {1,..., k}. In

other words, we choose the mapping ofAonto B insuch a way that themaximum

travel time of any probe head is minimized (see Figure 5.9). We refer to this as

the generalized distance function.

In some technologies, each probe head may be carried by its own moving

horizontal bar [YCC91]. If the probing apparatus is constructed so that all such

probe carriers lie in the same plane, collisions between probes become a concern

in the sense that no two bars can cross each other's path. In other words, the y

coordinates of the k probe heads must satisfy yi < y2 ^ ^ Vk all times.

Thus, the probe head coordinates are always sorted lexicographically [YCC91 .

This constraint clearly yields a different distance function, which we call the

collision-free distance. The collision-free distance function is more restrictive than

the generalized distance function, since only one permutation of the probe heads
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Al=(6.5)

^ Probe .

Probe B B2=(ll,2)

B1=(0.0)

Figure 5.9: An example illustrating the distance function between
the two probes A = {A1,A2}, and B = {B1,B2}. We have
dist{Al^Bl) = 6, dist{A2,B2) = 9, dist(A2,Bl) = 4, and
dist{Al^B2) = 5; thus, the distance between the two probes A and B
is min(max(6,9),max(4,5)) = min(9,5) = 5 (i.e., the best strategy will
move one probe head from A2 to, Bl while the other probe head moves
from A1 to B2).

is feasible in traveling from one set of locations to another. In particular, for fc = 2

the collision-free cost of moving the probe heads from A = {(xi,yi), (a:2,y2)} to

B = {(3:3,^3), (2:4, y4)}, where yi < j/2 and yz < is given by max{ \xi -

X3\ , |yi - ysl , \X2 - X4\ , 1^2 - y4|}-

The problem of efficient probe scheduling is stated as follows:

The Minimal A:-Probe Scheduling (fc-MPS) Problem: Given a set of k-

probes, minimize the total probe moving cost required in executing all probes.

A reduction from the geometric traveling salesman problem [GJ79] yields:

Theorem 5.11 The k-MPS problem is NP-hard.

Proof: We can transform a geometric instance ofTSP into an instance of A:-MPS

byintroducing k copies ofeach site, then considering ecich set ofk identical copies

of a site as a single fc-probe. Distances between probes will correspond to the

original distances between the corresponding sites in the TSP instance. •
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The probe scheduling problem seems quite unapproachable, both due to its

theoretical intractability and because the distance and travel cost functions are

not easily intuited. Thus, previous work relies on generic traveling salesman

heuristics to optimize the probe schedule. For example, when k = 2 probe heads

are available, Crowell et al. [CKC84] use a bandsort algorithm to optimize the

movement of one of the probe heads. Of course, the other probe head may be

forced to travel very large distances between probes, and indeed the resulting

schedule is often exceedingly inefficient. Yao et al. [YCC91] use simulated an

nealing and the Kernighan-Lin 2-opt operator [Lin65] as the basis of an iterative

interchange heuristic; their probe schedules save up to 83% of travel costs over

the method of [CKC84]. Note that all of the heuristics proposed in [CKC84] and

YCC91] have unbounded error.

In this section, we first show that the fc-probe travel costs are actually met

ric (although clearly not geometric), i.e., distances between fc-probes satisfy the

triangle inequality for all values of fc > 1. As a consequence, traveling salesman

heuristics with constant-factor error bound may be applied [PS82]. Second, we

exploit flexibility in the choice of probes to find probe sets which can coexist in

an efficient probe schedule.

5.3.1 Metricity of the fc-MPS Problem

With the collision-free distance function, the travel costs of the probe heads are

easily seen to satisfy the triangle inequality, since the probe head coordinates

are always in lexicographic order. Thus, moving the probe heads from A to G

via an intermediary B yields the same final probe permutation as would result

by moving directly from A to C. Metricity follows from the metricity of the
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Chebyshev norm.

For arbitrary fc-probes A, B and C, we may view the generalized travel costs

c{A,B), c{B,C) and c(A,C) as being respectively determined by the optimal

(minimum-cost) permutations cri : A B, <T2 : B C and : A C.

Comparing the composed permutation cti o 0-2 : A C with the permutation

<73 : A —> C yields the following:

Theorem 5.12 For any three k-probes A, B and C, the generalized travel costs

c{A,B), c{ByC) andc{A,C) satisfythe triangle inequality, i.e., c(A,B)+c{B, C) >

c{A,C).

Proof: Compare the permutation : A C that defines c(A,C), with the

induced permutation <ri o <72 ; .4 C (see Figure 5.10). Define mcix(<T) to be the

maximum distance traveled by any probe head according to the permutation a.

Clearly c(A, C) < max(<Ti o<72), since <ti 00-2 is not necessarily the minimum-cost

permutation between A and C. On the other hand, max(<Ti o <72) < c{A,B) +

c{B, C) by the triangle inequality and the metricity of the Chebyshev norm. It

follows that c(A, C) < c(A, B) + c(B, C). •

Theorem 5.12 allows us to apply heuristics which achieve bounded error for

metric TSP instances. In particular, invoking Christofides' combination of a

minimum spanning tree construction and matching [PS82] yields;

Corollary 5.13 Given a fixed set ofn k-probes, for any k> I, a heuristic probe

schedule with cost at most | times optimal can be found in O(n^) time.
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I ✓ uz

Figure 5.10: Metricity of the probe travel cost function.

5.3.2 Varying the Probe Set

A further optimization of the tour schedule is possible because the set of probes

is itself variable. Figure 5.11 depicts an instance where a "smarter" choice of

probes reduces the optimal tour cost byone-quarter. Most tree topologies can be

tested with the minimum number of probes in many distinct ways. For example,

each 3-pin net in Figure 5.11 can be tested by a minimal set of 2-probes in three

distinct ways (i.e., any two probes can be used); in fact, the 2-pin net is the

only connection topology with a unique minimum probe set. For special nets

such as power and ground nets, the usual MCM architecture allows even more

freedom: such nets can be viewed as being implemented by vias to dedicated

routing planes, so that any partition of the pins into sets of cardinality k will

cover all edge faults.

We thus obtain a new type of compatibility TSP problem, where a set of k-

probes is selected to cover each net such that the optimal tour cost for the union

of all probe sets is minimized. Such a formulation, where there is a synergy

between the choice of probes and the optimal tour cost, seems to be new in the
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Q B2 P B2
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Al'Iv' »,oAiiV* >*; O B3

A3

Figure 5.11: An example showing how careful probe selection can
reduce the total tour length by as much as one-quarter: four
probes are required for complete edge fault coverage in the two
3-pin nets {Ai = (0,0), A2 = (0,1), A3 = (1,0)} and
{Bi = (€,e), B2 = (e,l -I- e), ^3 = (1 -|- e,e)}. Assuming that the probe
tour must start and end at the origin, the probe set on the left will be
optimally ordered as {(Ai,A2) , , (^2,^3) , (Ai,A3)}, requiring
about four units of travel time. The probe set on the right may be ordered
as {(Ai,A2) , {Bi,B2) , {Bi,Bz) , (Ai,A3)}, requiring only about three
units of travel time.

literature and is of independent interest.

The Minimal Probe Generation/Scheduling (MPG/S) Problem: Given

a tree, determine and schedule a set of fc-probes so that the total probe moving

cost is minimized.

In order to hybridize the probe-generation phase with the tour-scheduling

phase to take advantage ofthenon-uniqueness ofminimum probe sets, we propose

the heuristic PR0BE3 (Figure 5.12). PROBES is based on a minimum-cost

insertion strategy [Law85], i.e., it schedules all probes for a small subset S of

nets, then iteratively adds the probe which has lowest insertion cost in the tour

while still allowing a minimum probe set.^ In executing PROBES, we typically

choose S to be all nets other than power, ground, and 3-pin nets. That is,

^Note that a probe set which allows us to minimize travel cost may have more than the
minimum possible number of probes. However, the heuristics discussed in this section require
that the number of probes is minimum; the more general optimizationis open.
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we specifically exploit the high degree of freedom in choosing probes for power,

ground and 3-pin nets. As seen in the next section, PR0BE3 yields significantly

shorter schedules than existing methods.

PROBES: Insertion-based method for probe selection

Input: A collection N of trees
Output: A probe schedule which tests all edge and node faults
Compute minimal probe set P verifying a subset S C N of the trees
Compute a heuristic schedule (tour) Pi,..., Pm,Pi of P
While 3 a tree not having complete fault coverage

Find a probe P* for any such tree Ni subject to
(i) Ni stiU coverable by minimum number of probes after P* is added
(ii) the probe's minimum insertion cost between consecutive probes is
minimized, i.e., min min {c{Pi, P*) -|- c{P*, Pt+i) —c(P,-, Pi+i) }

feasible P* •
Insert P* into the tour between probes Pi and P,+i,

where i is tour index at which P* had minimum insertion cost

Figure 5.12: PROBES: An insertion-based heuristic for probe selection.

5.4 Experimental Results

We tested our algorithms on an MCM benchmark design obtained from Hughes

Aircraft Co., containing 44 components and 199 nets. This is the same bench

mark used by Yao et al. in [YCC91]. We also used two randomized versions

of the Hughes benchmark, where the same net topologies were retained but pin

coordinates were reassigned randomly from a uniform distribution in the layout

region. PR0BE2 was used to generate minimal probe sets which cover all pos

sible edge and node faults. The schedules for these probe sets were optimized

using the 2-opt TSP heuristic, as well as by 2-opt followed by 3-opt (in a separate

run).
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We also tested a variant of PR0BE3 on the same benchmark, as described

above. We first generated a minimal set of probes for all nets other than power,

ground, and nets with three or fewer pins, then computed a heuristic tour for

these probes, using the 2-opt TSP heuristic (again, in a separate run, we used

2-opt followed by 3^opt), Finally, for the remaining nets, we iteratively added

additional probes which (i) could be inserted into the current tour with minimum

cost, and (ii) were compatible with previously chosen probes in some minimum

probe set. In all cases, a total of 634 probes were generated by our algorithm, the

same number as that generated by the algorithm of [YCC91]. With each of the

PR0BE3 experiments, 226 probes were initially chosen to cover the nets which

had > 3 pins and which wereneither powernor ground; the remaining 408 probes

were added incrementally. In the PR0BE3 experiments, we optionally ran 2-opt

improvement after every 10 probes added, and optionally ran 3-opt improvement

after every 50 probes added. Allof the abovebenchmarkswererun with both the

collision-free and generalized distance functions. These results are summarized

in Table 5.1.

As expected, the PR0BE3 variants, being able to carefully choose probes

while constructing the heuristic tour, outperformed PR0BE2 by a considerable

margin. For the benchmark design, the best tour obtained in [YCC91] using

simulated annealing had cost 150,525,000; in comparison, our PR0BE3 variants

obtain up to 21% improvement over this result. Since simulated annealing usually

gives solutions quite close to optimal [JAM89], our results indeed confirm that

careful choice of compatible probes is an important issue."*

"•Recently, Chou et al. [CCR92] have used the same compatibility-TSP idea, along with
simulated annealing, to achieve an additional 9% reduction in probing cost.
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MCM metric

PR0BE2

+ 2-Opt

PR0BE2

-I- 2-Opt

-1- 3-Opt

PROBES

-1- 2-Opt

PROBES

-F 2-Opt

-1- 3-Opt

Hughes general

coll-free

160,435,000

163,202,000

153,185,000

157,600,000

126,210,000

131,010,000

118,497,000

126,637,500

Rndl general

coll-free

294,164,000

302,684,000

286,679,000

289,843,000

265,276,000

269,346,000

257,838,000

260,897,000

Rnd2 general

coU-free

295,956,000

304,885,000

285,379,000

294,421,000

271,869,000

270,767,000

260,150,000

263,113,000

Table 5.1: Performance of PR0BE2 and PROBES variants on the indus

try benchmark and on random examples, using both the collision-free and
generalized distance functions. Note that the best probe schedule cost
obtained by Yao et al. for the industry benchmark, using simulated an
nealing, was 150,525,000 units. The tour obtained by PROBES -|- 2-opt
-f- 3-opt gives savings of 21% over this value.

5.5 Remarks and Extensions

We have examined the problem of verifying interconnection trees, with partic

ular emphasis on applications to multi-chip module substrate testing. We have

formulated tree testing as a problem of connectivity verification using fc-probes,

and presented linear-time algorithms for optimal probe generation. Our algo

rithms yield minimum probe sets which cover all possible edge and node faults.

Since the associated probe scheduling problem is metric, a scheduling heuristic

with constant-factor error-bound can be obtained. Furthermore, we presented

an insertion-based heuristic which addresses a "compatibility TSP" formulation

in exploiting synergy between the choice of probes and the associated schedul

ing problem. This heuristic significantly improves probing costs over previous

methods.

There are a number of interesting open problems. The fact that many different
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probe sets can test a given tree yields an interesting TSP variant, as noted above.

It is possible that a "prize-collecting salesman" formulation (e.g., at least two of

the three possible probes must be "collected" for each 3-pin net) can be solved

with constant-factor error via an LP-relaxation scheme. This would be quite

useful, as the bounded-error heuristic of Corollary 5.13 in Section 5.3 applies

only when all of the probes have been fixed. Analyzing the maximum error

inherent in arbitrarily fixing a probe set is also of interest.

Developments in probe technology will soon allow A; > 2 probe heads to move

simultaneously, affording even greater freedom in choosing the probe sets. Thus,

the synergy between choice of probes and the resulting optimal schedule cost

will continue to be of significance. More sophisticated strategies for the efficient

insertion of probes into a partial tour are possible; for example, we may look for

the best combination of probe additions with probe deletions, then iterate this

tour improvement until no further cost reduction is possible. Finally, the concept

of verifying connectivity by checking paths, rather than edges, is quite novel, as

is the "physical" model ofnode failure; thesenotions can be applied to both trees

and arbitrary graphs which arise in other fields of study.
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CHAPTER 6

Prescribed-Width Routing

6.1 Introduction

Thus far, our connectivity formulations have implicitly assumed that intercon

nections (i.e., edges and paths) have zero width. However, we often require a

path to have a prescribed minimum width. For example, printed circuit board

designs may require varying minimum interconnection widths either because of

high current loads or because several wires (e.g., ofa bus) mustbe routed parallel

to each other [McL90].

The problem of prescribed-width routing also arises in robotics, particularly

for kinematic path planning (as distinguished from dynamic planning; see [Lat91]

for a survey ofrobot motion planning) subject to twoverypracticalrequirements:

(i) the need to incorporate uncertainty into the formulation, and (ii) the need

to construct an error-tolerant solution. These extensions respectively yield the

notion of a general cost function in a given environment, and the notion of a

prescribed path width that can accommodate the physical size of an agent. We

note that existing path planning approaches [ABF88] [Can88] [Con90] [Lat91]

[MMP87] [OY83] [Pap85] [SSH87] are not applicable since they make an implicit

zero-width assumption, or else do not allow arbitrarily costed environments.

In this chapter, we formulate and solve the problem of finding minimum-cost
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source-destination paths having prescribed widths. Our main contribution is a

polynomial-time algorithm for prescribed-width routing in arbitrarily costed en

vironments, Essentially, we discard the usual mix of shortest-path algorithms and

graph search techniques, and instead employ a more general combinatorial ap

proach. Weuse networkflow algorithmsto exploit the duality betweenconnecting

paths and separating sets: a minimum-cost path which connects two locations is

equivalent to a minimum-cost cut-set which separates two other locations. Exper

imental results confirm the viability of our approach, and our method generalizes

to solve the classical Plateau problem on minimal surfaces [Tsu86], a result of

independent interest [HKR92b].

The remainder of this chapter is organized as follows. In Section 6.2, we for

malize the prescribed-width routing problem for arbitrarily costed regions. Sec

tion 6.2 also develops our solution for prescribed-width routing via network flows,

and describes an efficient implementation. Section 6.3 gives experimental results

showing optimal prescribed-width paths in environments ranging from random

cost maps to the more traditional class of maps with solid polygonal obstacles.

Section 6.4 extends our approach to solve the classical Plateau problem. We

conclude in Section 6.5 with several directions for future research.

6.2 Prescribed-Width Routing by Network Flows

We begin by establishing notation and terminology. Our development focuses on

the duality between connection and separation which motivates the network flow

approach.
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6.2.1 Problem Formulation

We say that a subset R of the plane is simply connected if it is homeomorphic to

a disk (i.e., R contains no holes). We define a region to be a simply-connected

compact subset of 3?^. By the Jordan curve theorem [CR41], the boundary B

of a region R partitions the plane into three mutually disjoint sets: B itself; the

interior of i?; and the exterior of R. We consider the problem of computing a

path in R from source S to destination T, where S and T are disjoint connected

subsets of the boundary B. A path is defined as follows:

Definition: Given a region R with a boundaxy B, a path between two disjoint

connected subsets S C B and T C B is a. non self-intersecting continuous curve

P Q R which connects some point s € S to some point t Q.T.

Clearly the path P partitions R into three mutually disjoint sets: (i) the

set of points of R lying strictly on the left side of P, which we denote by Ri

(we assume that P is oriented in the direction from s toward <); (ii) the set of

points of R lying on the right side of P, denoted by and (iii) P itself. This

is illustrated in Figure 6.1. It is possible for at most one of Ri and Rr to be

empty, and this happens exactly when P contains a subset of B between S and

T. More precisely, Ri (resp. Rr) is empty if P D Bi (resp. P 3 Br), where

Bi and Br respectively denote the subsets of the boundary B lying clockwise

and counterclockwise between S and T, i.e., Bi = {B C\ Ri) —(5 UT) and Br =

{BnRr)-{S(JTy

As noted above, the goal of this chapter is to optimally solve the path plan

ning problem when two practical constraints are incorporated: an arbitrary cost

function is defined over the region, and a prescribed path width is given. The

capability to deal with a general environment is quite powerful, particularly for
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Figure 6.1: A path P between two points s E S and t E T, where S and
T are disjoint subsets of the boundary 5 of a region R.

robotics. For example, consider the following scenario: given probabilistic in

formation about environment cost/difficulty (e.g., rivers, swamps, fields of land

mines) and the locations of hostile entities, an agent wishes to travel with mini

mum probability of incurring a casualty or other damage. In this scenario, each

point in the region will have an associated weight, or cost of traversal, correspond

ing to the level ofdanger. This formulation subsumes the traditional binary^ cost

function of an environment with solid polygonal obstacles and free space.

Formally, given a region i?, we define a weight function w : R such

that each point s e R has a corresponding positive weight w{s). The cost of a

path P C Ris defined to be the integral of w over P. Optimal path planning

entails minimizing this path integral. To find a minimum-cost path P C R

between two points on the boundary of R, one might be tempted to suppose that

Dijkstra's shortest paths algorithm [CLR90] would provide a natural solution.

However, application ofDijkstra's algorithm relies on an implicit assumption that

the solution is an idealp&th, i.e., a path of zero width. This caveat becomes clear

the range of the function is either 0 (free space) or 1 (solid obstacle).
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as we consider our second extension to the basic formulation - the requirement

of a prescribed-width solution.

For robotics applications, the prescribed-width formulation is motivated by

the inability due to errors in location, orientation and motion of the agent to

exactly follow a given path. A path is error-tolerant if the agent will not come

to harm when it makes a small deviation from the path; in the above scenario,

a path which requires the agent to tiptoe precisely between landmines is not as

error-tolerant as a path which avoids minefields altogether. We achieve error-

tolerance by imposing a prescribed minimum-width constraint on the path. This

prescribed-width formulation also addresses the fact that robot agents axe phys

ical entities with physical dimensions: because physical agents do not occupy

only point locations in the environment, the minimum-cost path of zero width

that is computed by a shortest-path algorithm may be infeasible. Note that in

general, the optimum path for an agent of width dx cannot be obtained by simply

widening or narrowing the optimum path for an agent of width d^.

We now establish the relationship between a prescribed-width path require

ment and the concept of d-separation [GHY74]. In what follows, we use ball{x, d)

to denote the closed ball of diameter d centered at x, i.e., the set of all points at

distance | or less from x.

Definition: Given two disjoint subsets S and T of the boundary of a region

R, a set of points P Q Ris a, width-d path between S and T if there exist s € S,

t € T and a path P connecting s to t such that P 2 U {ball{x,d) DR}, i.e., P
xeP

contains the intersection of R with any ball of diameter d centered about a point

of P.

Just as the path P between S and T partitions R into i?/, Rr, and P, the
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width-c? path P Q R between S and T also partitions R into three sets: (i) the set

of points Ri = {{R—P)r)Ri)(jBt, that is, the union of the left boundary Bi and all

points in R that are to the leftof P; (ii) the set of points Rr = ((il—P)ni?r)U5r;

and (iii) the point set P itself. We now obtain the definition of a (/-separating

path (see Figure 6.2):

Definition: Given two disjoint subsets S and T of the boundary of a region R,

a set of points P C i? is a d-separating path between S and T if P is a width-</

path such that any point of Ri is distance d or more away from any point of Rr.

P

P

Figure 6.2: A ^-separating path P of width d between two points s e S
and t € T of the boundary of a region R. Here Ri is separated from Rr
by a distance of d.

A (i-separating path P between S and T is minimal if no subset of P satisfies

the preceding definition. Because all points in R have positive cost and because

we are interested in minimum-cost paths, the following discussion refers only

to minimal (/-separating paths. Given a specific width </, the prescribed-width

routing problem can now be stated as follows:

The Prescribed-Width Routing Problem (PWR): Given an arbitrary re

gion R with boundary B, weight function iw : i? —» Si"*", a source 5 C 5, a
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destination T C B, and a width d, find a cJ-separating path P C R between S

and T which has minimum cost.

While our formulation specifies an arbitrary weight function that is integrated

to yield path cost, in most practical situations the region is discretized relative to a

given fixed grid or sampling granularity (see, e.g., [BL91]). Thus, in the present

work we will further assume a fixed-grid representation R of the environment

region R. With this discrete PWR formulation, the cost of a path is defined to

be the sum of the weights of the nodes covered by the path. Similarly, the notion

of (^-separation also naturally extends to the discrete grid:

Definition: Given a region R, a discrete (/-separating path P in the gridded

region R is the set of gridpoints of R which are contained in some (/-separating

path P inR (Figure 6.3).

R

Figure 6.3: Adiscretized representation ^ of a region R, and a discrete
(i-separating path P in R. Note that P is the set of lattice points covered
by the continuous (/-separating path P in R.

As before, a discrete (/-separating path is minimal ifno subset of it satisfies this

definition. Analogously to the continuous case, a (/-separating path partitions

the gridded environment into two subsets, such that each gridpoint from one
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partition is a distance of at least d units away from any gridpoint in the other

partition. We therefore have the following problem formulation:

The Prescribed-Width Routing Problem in a Grid (PWRG): Given a

weighted gridded region R with boundary B C R, a. source S C B, a. destination

T C B, and a width d, find a discrete (/-separating path P C R between S and

T which has minimum cost.

Intuitively, as the granularity quantum approaches zero, the solution for the

PWRG instance will converge to the solution for the corresponding continuous

PWR instance. At this point, we observe that although PWRG is a very natural

problem formulation, it cannot be efficiently solved by traditional methods. In

particular, efficient graph algorithms such as Dijkstra's shortest-path algorithm

fail because the optimal (/-separating path may self-intersect: when the shortest-

path algorithm attempts to increment a path, it cannot determine how much of

the increment should be added to the path cost (see Figure 6.4).^

In the special case where the cost function is binary, Dijkstra's algorithm

is applicable using the well-known technique of augmenting the environment by

growing each obstacle (as well as the region boundary) isotropically by | units

Lat91]. The weight of each node in the free area is then set to some constant,

while the weight ofany node in an area covered by an obstacle is set to infinity. A

minimum-cost zero-width path in such an augmented environmentcorresponds to

^Recall that in an n-node arc-weighted graph G = (V, E) with Wentified source vq € V, the
phase of Dijkstra's algorithm, k = 1,..., n, finds another node Vk for which the shortest

pathlength dot in G is known; we know the optimum s-t pathlength when Vk =t. Although the
PWRG formulation above assumes a node-weighted G, we may easily obtain an arc-weighted
graph (for all w€ V^, add ^ to the weight of each edge incident to v) to which we may apply
Dijkstra's algorithm. However, this transformation is correct only for computing the optimal
zero-width path: Dijkstra's algorithm relies on the fact that dij can never be strictly less than
minkidik -I- dkj), but this may not hold when paths have non-zero width, as shown in Figure
6.4 [Hu69].
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Figure 6.4: An optimal path with non-zero width can intersect itself (in
this example the center gap is too narrow to allow the path to pass through
it); efficient shortest-path algorithms cannot solve prescribed-width rout
ing for such instances.

the center P of the <i-separating path P that we seek (Figure 6.2). Unfortunately,

this simple transformation fails when the formulation involves an arbitrary weight

function.

Recall that our path cost model charges only once for each node covered by

the path, reflecting the original motivation of minimizing the "path integral" of

cost. Arguably, this is not unreasonable. For example, once a minefield has been

cleared, the hazard associated with a second visit is zero. Similarly, when a path

is plowed through snow or when a road is paved, the work is proportional to

the actual area plowed or paved. Given this path cost formulation, Dijkstra's

algorithm cannot be applied since it requires fixed edge costs in the underlying

graph. Figure 6.5 illustrates this, where we let the cost of a grid edge (y,z) be

w{Z —ZOY), withT and Z being thesets of gridpoints in ball{y,d) and ball{z,d)

respectively. The weight function w is naturally extended to sets of nodes, e.g.,

w[Z) = ^ w{z). Unfortunately, this cost definition can still charge more than
z&Z

once for a single visited region, as indicated in Figure 6.5.
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Figure 6.5: Dijkstra's algorithm fails for the general prescribed-width rout
ing problem because the cost of an edge e = (j/, 0) may depend on many
previous nodes (e.g., x') on the path: in this example (right), the cost of
incrementing the path by adding the edge e should be w{Z—{Zn(YUX')))
rather than w{Z —{Z OY)), otherwise the cost of the small dark region
(right) will be charged twice.

We now use a network flow approach to develop an efficient, optimal algorithm

for the PWRG problem.

6.2.2 A Network Flow Based Approach

Before describing our method in detail, we review several key concepts from the

theory of network flows [FF61] [Law76]. Aflow network 7/ = {N,A,s,t,c,c') is a

directed graphwith node set iV; a set ofdirected arcs A Q N x N] a, distinguished

source s € iV and a distinguished sink t € N; an arc capacity function c : A ^ Si"*"

which specifies the capacity c,j > 0 of each axe a,j € A; and a node capacity

function d : N which specifies the capacity > 0 of each node n, € N. To

handleundirected graphs, we mayreplace each undirected arc aij by twodirected

arcs Cij and aji, each having capacity Cij.

A flow in rj assigns to each arc a,j a value <j>ij with the constraint that 0 <

<f>ij < Cij- An arc a,-, is called saturated if (f>ij = Cij. We insist on flow conservation

at every node except s and t, and we require that the flow through each node
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does not exceed the capacity of that node:

= ^4>ik < c'j
i k

Anode tij is called saturated if^ (f>ij = c'j. Since flow is conserved at every node,
i

the total amount of flow from the source must be equal to the total flow into the

sink; we call this quantity the value $ of the flow:

* =
« i

A flow with the maximum possible value is called a maximum flow. An s-t

cut in a network is a set (TV', A') of nodes N' C N and arcs A' Q A such that

every path from s tot uses at least one node of N' or at least one arc of A'. The

capacity c(iV', A') of a cut is the sumof the capacities of all nodes and arcs in the

cut. A classical result of linear programming duality states that the maximum

flow value is equal to the minimum cut capacity; this is the max-flow min-cut

theorem [FF61]:

Theorem 6.1 Given a network t] = (iV, A,5,t, c,c'), the value of a maximum s-t

flow is equal to the minimum capacity of any s-t cut. Moreover, the nodes and

arcs of any minimum s-t cut are a subset of the saturated nodes and saturated

ares in some maximum s-t flow.

Recallour initial observation that any s-t path will separate, i.e., cut, Ri from

Rr. In particular, an inexpensive s-t path will correspond to an inexpensive cut

between two appropriately chosen nodes s' and t'. Since a subset ofthe nodes and

arcs saturated by the maximum s'-t' flow will yield this s'-t' cut, it is natural for

us to derive the desired s-t path via a maximum-flow computation in a network
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whose capacities correspond to costs in R. The remainder of this section describes

how we accomplish this.

To transform prescribed-width routing in a region R into network flow, we

first superimpose a mesh network topology over il, then assign node weights in

this network according to the weighting function w. This yields a representation

that is essentially equivalent to the underlying PWRG instance.

We guarantee a prescribed-width solution, by ensuring that any separating

node set in the mesh topology will satisfy the width-<i requirement. To this

end, define the ^^-neighborhood of a node v in the mesh to be the set of all

nodes that are at distance of d or less units away from u, and then modify the

mesh topology by uniformly connecting each node to all other nodes in its d-

neighborhood, where d is the prescribed path width. The resulting network is

called a d-connected mesh, and has the property that no nodeset of width less

than d can be a (/-separating set. An illustration of this construction for c? = 2

is given in Figure 6.6. The concept of a (/-neighborhood was first investigated by

Gomory and Hu [Hu69].

Figure 6.6: A node and its (/-neighborhood for d = 2.
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Finally, we choose the nodes s' and t' such that the s'-t' cut is forced to

lie along some path between s and t. We accomplish this by making s' and

t' respectively into a source and a sink, then connecting each to a contiguous

set of nodes corresponding to part of the boundary of the original region R.

This completes the outline of our transformation; Figure 6.7 gives a high-level

illustration of the construction.

Source

prescribed-width
path

weigntea
region / mesh :

Sink

Figure 6.7: A prescribed-width routing instance transformed into a net
work flow instance.

Observe that up to this point, we have converted a prescribed-width rout

ing instance to an undirected, node-capacitated (node-weighted) flow instance.

However, network flow algorithms typically assume that the input is an arc-

capacitated network (with infinite node capacities). Therefore, in order to use

a standard maximum flow algorithm on our network, we must transform an in

stance having both node and arc capacities into an equivalent arc-capacitated
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maximum flow instance.

To accomplish this, we use the standard device of splitting each node v €

N with weight into two unweighted nodes v' and v", then introducing a

directed arc from v' to v" with capacity i£;(u). Also, each arc («,v) € i4 of the

original, network is transformed into two infinite-capacity directed arcs {u",v')

and {v",u'). Thus, each arc {v',v") of the resulting directed network will, when

saturated, contribute the original node weight w{v) to the minimum cut value.

This transformation is illustrated in Figure 6.8.

The overall size of the network increases by only a constant factor via this

last transformation, i.e., the final directed arc-capacitated network will have only

21 TVI nodes and |Ar| 2|A1 arcs. Therefore, the maximum flow computation in

the transformed network will be asymptotically as fast as in the original network.

Figure 6.8: Transformation of a node- and arc-capacitated flow network
to an arc-capacitated flow network (in our case Cij = oo).

Note that a maximum flow in the arc-capacitated transformed graph corre

sponds to a minimum arc-cut in the transformed graph (via the max-flow min-cut

theorem), which in turn corresponds to a minimum node-cut in the original graph

since the transformation preserves minimal cutset costs. Moreover, the "width"

of the cut can be no less than d since, as discussed above, the connection of each
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node to all nodes in its c?-neighborhood guarantees that any separating node set

will have this prescribed width. A formal summary of our algorithm, which we

call the rf-PATH algorithm, is given in Figure 6.9.

d-PATH: Finding a prescribed-width path in a weighted region

Input: Region R, weight function w : R S?"'", width d,
grid size g, source s and destination t on boundary of R

Output: A d-separating path P C R connecting s and t

Create a d-connected mesh graph G of size g x g over R

Assign node weights in G according to weight function w

Set all boundary node weights to oo

Transform node/arc-capacitated network G into arc-capacitated network G'
Add source s' and sink t' to G'

Connect s' to Bi, the boundary nodes of R, clockwise from 5 to <

Connect t' to Br, the boundary nodes of R, clockwise from t to s

Set capacities of aU arcs adjacent to $' or t' to oo
Compute maximum s'-t' flow in G'
Output all nodes incident to arcs in the minimum s'-t* cut of G'

Figure 6.9: Finding a prescribed-width path of minimum cost in an arbi
trary weighted region, i.e., an optimal solution to the PWRG problem.

We conclude this section with the observation that the max-flow min-cut

theorem [FF61] and the existence ofefficient algorithms for maximum flow (e.g.,

FF61] [CLR90]) together imply the following;

Theorem 6.2 Algorithm d-PATH outputs an optimal solution to the PWRG

problem in time polynomial in size of the mesh representation of the region R.

6.2.3 A Practical Implementation

There arenumerous algorithms for computing maximumflows innetworks [AOT87

•FF61] [Hu69]. To demonstrate the viability of our approach, we have used an
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existing implementation of Dinic's networkflow algorithm [GG88]. Starting with

an empty flow, the Dinic algorithm iteratively augments the flow in stages; the

optimal flow solution is achieved when no flow augmentation is possible. Each

stage starts with the existing flow, and attempts to "push" as much flow as possi

ble along shortest paths from the source to the sink in a residue network wherein

each arc has capacity equal to the difference between its original capacity and

its current flow value. After the current flow has been thus augmented, newly

saturated arcs are removed and the process iterates. Since there can be at most

|iV| —1 such stages, each requiring time at most 0{\A\ • |iV|), the total time

complexity of the Dinic algorithm is 0{\A\ •|7Vp).

If we have a total of N nodes in our mesh graph, the time complexity of

the Dinic algorithm is 0(|iVp). In practice, more efficient flow algorithms are

available. For example, by using the network flow algorithm of [GTT89], we

obtain the following:

Theorem 6.3 For a given prescribed path width d, algorithm d-PATH solves the

PWRG problem in 0{\N\'̂ • log|iV|) time, where |iV| is the number of nodes in

the mesh representation of the region R.

Proof: Each node in the mesh induced by the method has no more than <P

adjacent arcs, so that |A| = 0{d^ •|iV|). The network flow algorithm of [GTT89]

operates within time 0{\A\ •liV| •log(^)). Assuming that d'lsa, constant, the
overall time complexity ofour method is therefore 0(|iVp •log \N\). •

The time complexity may be further reduced in cases where the cost function

over the region may only taJke on values from a fixed, bounded range. In this

case, we may apply the maximum flow algorithm of [AOT87] to obtain an overall

time complexity of 0(|iVp) for our method.
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6.3 Experimental Results

Our current implementation integrates ANSI C code to transform an arbitrary

prescribed-width routing instance into a maximum-flow instance; we then use the

Fortran-77 Diniccode of [GG88] to compute the flow, and then invokeMathemat-

ica [Wol91] to draw the resulting path. We have tested our implementation on

three classes of prescribed-width routing instances: uniformly weighted regions,

environments with polygonal obstacles, and smooth randomly-costed environ

ments. For each of these input classes, the boundary of the region is a rectangle,

and we look for a path connecting s and t which are respectively in the top left

and bottom right corners of the region.

A uniformly weighted region has all node weights equal to the same constant.

In such an instance weexpect the solution path to resemble a straight line between

s and t, with the straightness of the line improving as the mesh resolution and

the width d both increase. Experimental results confirm this behavior.

Our test environments with polygonal obstacles are populated by polygons of

varying sizes, located throughout the region. Nodes in the clear areas are uni

formly assigned a small constant weight, while nodes inside the obstacles have

infinite weight. In such an environment, changing the prescribed path width d

may dramatically affect the optimum path topology with respect to the obsta

cles, as the path may be forced to take long detours in order to avoid narrow

passages between objects. This phenomenon was indeed apparent in our results,

as illustrated in Figures 6.10 and 6.11.

Finally, we tested our methodology on randomly-costed environments, using

a mesh resolution of 100 by 100 nodes and a range of d values. Each random
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Figure 6.10: Prescribed-width paths in a region with polygonal obstacles.
Note that the topology of the solutions changes as the prescribed width d
is increased. The solutions shown correspond to widths d = I (top left),
d = 2 (top right), c? = 3 (bottom left), and = 4 (bottom right).

instance was generated as follows. All nodes in the mesh were initially assigned

a weight of zero, except for a small random subset of the nodes which were

eachgiven large random positive weights. Then, a weight redistribution step was

iteratively used to increment each node's weight bya small random fraction ofthe

total weight of that node's immediate neighbors until a smooth randomly-costed

environment jvas obtained. Figures 6.12 and 6.13 depict typical </-PATH output

for the PWRG problem in a random environment. Regions of greater weight axe
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Figure 6.11: Prescribed-width paths in a region with polygonal obstacles
(continued). The solutions shown correspond to widths ci = 5 (top left),
d = 6 (top right), d = l (bottom left), and rf = 8 (bottom right).

denoted by darker shades, and regions of smcdler weight are depicted by lighter

densities. The optimum width-rf path is highlighted in black. We emphasize that

even with the Dinic algorithm, which is certainly not the ideal implementation

for a mesh network topology, typical running times used to generate and solve

all of the above classes of instances are on the order of only a few minutes on

a Sun Sparc IPG. We therefore conclude that our approach constitutes a viable

new method for prescribed-width routing in general environments.
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Figure 6.12: Asmooth randomly-costed environment and its optimal pre
scribed-width path solutions. We see the environment itself (top left), as
well as solutions corresponding to widths d —1 (top right), d = 2 (bottom
left), and d = 3 (bottom right).

6.4 Extension: Optimum Solution of the Discrete Plateau

Problem

In this section, we extend our prescribed-width routing formulation and method

to solvea discrete version of the classic Plateau problem. The problem of Plateau,

in its simplest form, is to find the surface of minimum area that spans a given

curve. The Plateau problem is part of the extensive field of minimal surfaces,
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Figure 6.13: A smooth randomly-costed environment and its optimal pre
scribed*width path solutions (continued). Here we see the solutions cor
responding to widths c? = 4 (top left), d = h (top right), d = 7 (bottom
left), and d = S (bottom right).

which originated with the development of the multidimensional calculus ofvaria

tions [Cou50] [FomOOa] [Fom90b]. Although thestudy ofspecific two-dimensional

minimal surfaces can be traced back to Lagrange (1768), the first extensive inves

tigation of minimal surfaces was that of J. Plateau (1801-1883), who used soap

films as physical models of minimal surfaces [Pla73]. Subsequently, many great

mathematicians of the nineteenth and twentieth centuries, including Riemann,

Weierstrass, and Schwarz, made contributions to the theory of minimal surfaces
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[Str89], culminating with the discovery of general analytic solutions by Douglas

[Dou31] and Rado [Rad33] in the 1930's.

It can be shown that a surface has minimal area if and only if it has zero

mean curvature at each point, but this characterization is non-constructive. The

problem is subtle: (i) a minimal surface may self-intersect, (ii) a given contour

can bound numerous different surfaces of distinct topologies, and (iii) a very

slight modification to the boundary contour can cause an enormous change in

the corresponding minimal surface topology [Cou50] [Dou38]. Finding a minimal

surface spanned by a given fixed boundary typically entails the solution of a

system of partial differential equations. In many instances, analytic solutions

are known to exist but remain virtually impossible to find, and solutions to

specific cases have been individually discovered and proved over the last two

centuries [Fom90a] [Oss69] [TF91]. A recent trend has been to solve instances of

the Plateau problem empirically via numerical methods [Con67] [Gre65] [Gre67]

[HSK74] [Tsu86] [Tsu87] [Tsu90] [Wil61].

We are primarily concerned with finding a minimal-area surface spanning

a Jordan curve in three-dimensional Euclidean space (as opposed to higher-

dimensional or non-Euclidean spaces):

The Plateau Problem (PI): Given a Jordan curve T* in 3ft®, find a surface

D* of minimum area having boundary F*.

The general formulation (PI) is difficult to address, and hence in the remain

der of this section we deal with the specific class of instances, first described by

Rado [Rad33], which satisfies:

(i) the orthogonal projection F of the given boundary F* onto the xy-plane® is
^We adopt the convention ofusing starred letters to denote three-dimensional objects (e.g.,
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simple (i.e., non self-intersecting), and

(ii) the solution admits a functional representation z = /(x,y), where / is con

tinuous and has domain equal to the subset of the xy-plane bounded by F.

The first condition specifies that the projection of the boundary curve is homeo-

morphic to a circle, while the second condition specifies that the projection of the

solution is homeomorphic to a disk. Historically, these two simplifying assump

tions are often made in the in the treatment of the Plateau problem [Rad33]. We

thus obtain:

The Restricted Plateau Problem (P2): Given a Jordan curve F* in

whose projection F onto the xy-plane is homeomorphic to a circle, find a surface

D* (having functional representation z = f{x, y)) of minimal area with boundary

F* (Figure 6.14).

Figure 6.14: A surface D* and its bounding contour F*, as well as the
corresponding projected region D and its boundary F.

This section develops a new constructive approach which optimally solves a

class of discrete instances of the Plateau problem (P2). We generalize standard

formulations in that we do not search for a minimal (zero-thickness) surface;

a contour T*, a surface D"), while unstarred letters denote their respective projections (e.g., a
boundary T, a region D).
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rather, we seek a minimal slab having some prescribed positive thickness d. Our

algorithm obtains a minimum-cost slab having thickness everywhere of at least

c?, where cost is defined to be the total weighted volume of the slab with respect

to an arbitrary weight function defined over

We diverge from the usual finite-element based approaches, and again employ

instead a combinatorial method involving network flows [FF61], following ideas

similar to those in Section 6.2 above. The crucial observation is again one con

cerning duality: a minimum-cost slab which spans a set of locations (e.g., the

set of locations on the Jordan curve F) is also a minimum-cost cut-set which

separates two other locations. Given this observation, we obtain minimal surface

solutions eflficiently via maximum flows, exploiting this duality between spanning

and separating sets [HKR92b].

The rest of this section is organized as follows. Section 6.4.1 formally defines

the problem. Section 6.4.2 formalizes our network-flow based approach to solving

the Plateau problem, describes our current implementation, and illustrates the

feasibility of our method on a small example.

6.4.1 Problem Formulation

Bythe Jordancurve theorem [CR41], the Jordan curve F partitions the plane into

three mutually disjoint sets: F itself; its interior mi(F); and its exterior ea;i(F).

We assume that the prescribed boundary F of our minimal surface is always a

Jordan curve. Given a three-dimensional point set P* C define its projection

to be the set of all points in the xt/-plane with x and y coordinates equal to those

ofsome point in P*; i.e., proj(P*) {(x, y) | 3^ B (a;, y,2) € P*}. We naturally

extend this idea of projection to apply to any function f{x,y) of two variables,
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by considering the function / to be the set/relation {{x,y, f{x,y)) | a;,y €

where f{x,y) is defined}; thus, proj{f) is simply the domain of the function /.

A Jordan curve in the plane is called a boundary, and we define a contour to be

a three-dimensional embedding of a Jordan curve:

Definition: A contour T* is the set of points {{x,y,f{x,y)) 6 | € F}

where / is a continuous real function / : F —over some boundary F.

Thus, a contour F* is a three-dimensional embedding of a curve that is home-

omorphic to a circle, and the orthogonal projection of F* onto the sy-plane is

the boundary F of some region D. Similarly, the desired surface D* satisfies

proj(D*) = D.

Definition: A surface D* is the set of points {{x,y,f*{x,y)) € G D}

where f* is a continuous real function defined over some region D in

the xy-plane.

Any contour F* induces an infinite family of distinct surfaces, each having F* as

boundary. Hence, the continuous surface function /* : i? 3? is an extension of

the contour function /, i.e., f*{x,y) = f{x,y) for all (x,y) € F C D, where F*

is the contour function over the boundary F of the region D. The surface D* is

said to be bounded by its contour F* (recall Figure 6.14).

Assuming that the partial derivatives and exist, it is not difficult to

see that a surface D* has well-defined area given by the integral:

I (^]Jd \ \ ^ +

A2 idf*y
+ 1 dx dy

\dy J

The question of which surface has minimum area is precisely the Plateau problem

(P2) stated above. In what follows, we develop the motivation for our network-

flow based solution.
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Given a surface D*, define the cylinder cyl{D*) to be the set of all points

directly above and below D*] i.e., cyl{D*) ='{(x, y, z) \{x, y) € proj{D*), z € 3?}.

We may extend the cyl function to contours: cy/(r*) ^cyl(int{proj{T*))). Any

surface D* partitions cyl{D*) into three mutually disjoint subsets:

1. the points lying above D*, denoted by D* {(a;, y, z) | (x, y) € proj{D*), z >

D'{x,y)};

2. the points of D* itself, {{x,y, D*{x,y)) \ {x,y) € proj{D*)}', and

3. the points lying below D*, denoted by Dl =' {(x, y, z) \(x, y) € proj{D*), z <

D*(x,y)}.

In other words, the surface D* separates Dl from D*. In practice, we truncate

both the top and the bottom of the cylinder cyl{T*) "far enough" above and

below D*, respectively, so that both £>* and Dl are bounded sets. We then

define a weight function w : cy/(r*) —> such that each point s € cyl{V*) has

a non-negative weight w{s).

Following a similar approach to that of Section 6.4.1 we now generalize our

formulation to allow a prescribed non-zero thickness to the separating surface D*.

From this, we will establish the relationship between the concept of d-separation

and a thickness-</ requirement.

Definition: Given a contour F*, a d-separating slab D* C cyl{D*) is a superset

of some surface D* with F* as the bounding contour of D*, such that any point
A

of D* —b* is at distance d or greater from any point of Dl —D*.

This is illustrated in Figure 6.15. We say that D* is a minimal d-separating slab

if no subset of D* satisfies the preceding definition. The cost of a slab is defined
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Figure 6.15: A^-separating slab t)* relative to a given contour F*.

to be the integral of the weight function w over the volume of the slab. Because

the weight function is non-negative and because we are interested in minimum-

cost slabs, our discussion henceforth will refer only to minimal (/-separating slabs.

Given </ > 0, the thickness-c? Plateau problem is stated as follows:

The Thickness-(i Plateau Problem (P3): Given a contour F*, a weight

function w : cyl{T') and a thickness d > 0, find a d-separating slab

i)* C cyl{T*) which has minimum total cost.

While the formulation specifies an arbitrary weight function that must be in

tegrated over the volume of the slab to yield a total cost, in practical applications

and innumerical approaches to the Plateau problem the space is often discretized

relative to a given fixed grid or a sampling granularity [HSK74] [Tsu86] [Wil61].

In the present work, we also adopt the assumption of a fixed grid representation.

With such a discrete version of problem (P3), the cost of a slab is naturally de

fined to be the sum of the weights of the grid points contained in it. The notion
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of (/-separation also naturally extends to the discrete grid:

Definition: Given a cylinder 5, a discrete ^-separating slab D* in the gridded

space 5 is a superset of the set of gridpoints of S contained in some (/-separating

slab b* in S (Figure 6.16).

Figure 6.16: A discretized representation S oi &space S, and a discrete
(/-separating slab D* in S. Note that D* is the set of lattice points con
tained in the continuous (/-sepaxating slab D in S.

As in the continuous case, a discrete (/-separating slab partitions the rest of the

gridpoints into two sets, such that each gridpoint in one set is at least distance d

away from any gridpoint in the other set. A discrete (/-separating slab is minimal

if no subset of it satisfies the preceding definition. We now have:

The Discrete Plateau Problem (P4): Given a weighted gridded space S with

boundary B C S, a. contour T* on the boundary of 5, and a thickness c/ > 0, find

a discrete (/-separating slab D* C S which contains T* and has minimum total

cost.

-Izlntuitively, as the granularity quantum of the grid approaches zero, the so

lution of the (P4) instance will converge to the solution for the corresponding

continuous (P3) instance.
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6.4.2 Applying the Network Flow Transformation

To solve the discrete Plateau problem (P4), we again use ideas from network

flows in continua [Hu69] (see Section 6.2.2) and exploit the duality between a

minimum cut and a maximum flow. The overview of our solution is as follows:

1. Discretize the volume of the cylinder induced by the given contour (i.e.,

consider only the lattice points of the cylinder with respect to a given

resolution).

2. Create a ^-connected mesh network over the cylinder by connecting each

lattice point to all other lattice points within distance d', this guarantees

that any separating set of nodes will have a minimum thickness d (we use

the obvious one-to-one correspondence between nodes of the network and

lattice points of the cylinder).

3. Connect a source node s (sink node t) to all nodes on the surface of the

cylinder that lie below (above) the contour.

4. Use a maximum flow algorithm to compute a maximum s-t flow in the

resulting network.

5. A maximum s-t flow specifies a minimum cut through the cylinder which

separates s from t, and this minimum cut corresponds toaminimal thickness-

d slab that contains the given contour.

Recall that any slab D* will separate, or cut, from D;. Thus, a slab D*

with small cost will correspond to a cut between a node s e Dl and a node t € D*

with small cost (capacity). As in the prescribed-width path solution of Section
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6.2, we derive the desired minimal slab via a maximum flow computation in an

appropriately capacitated network.

Our first step towards this goal is to transform an instance of the discrete

Plateau problem (P4) into an instance of network flow, by: (i) superimposing a

discrete grid on cyl{T*), (ii) assigning capacities to nodes in the grid according

to the weight function w :cyl{T*) —» 9®''', and (iii) converting the grid into a mesh

network r) by mapping gridpoints to capacitated nodes of t] and then adding

infinite-capacity arcs to join these nodes into a mesh.

To ensure that any s-t cut in the mesh created by (iii) will have the required

thickness, we connect each node to all nodes in its (^-neighborhood with infinite-

capacity arcs, where d is the prescribed slab thickness. An illustration of this

construction for = 1 is given in Figure 6.17.
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Figure 6.17: Anode (black) and itsd-neighborhood (grey nodes) for d=l.

192



Finally, we introduce a source node s and a sink node t, connecting them re

spectively to the nodes of the boundary B C S lying "below" F* and to the nodes

of B lying "above" F*. This forces any 5<-separating cut (which will correspond

to the desired d-separating slab) to contain the given contour nodes F* lying on

the boundary B of the gridded space. In other words, we force the minimum slab

to span the curve F*. This completes the outline of our transformation; Figure

6.18 gives a high-level illustration of the construction.

Sinkt

Source s

Figure 6.18: A discrete Plateau problem instance transformed into a net
work flow instance.

The resulting d-connected network has two useful properties. First, a mini

mum cutset of this network will consist only of nodes. This is because all arcs

have infinite capacities, while there exist cuts with finite cost since all node ca

pacities are finite. Second, the gridpoints associated with any nodeset that cuts

this network must correspond to the lattice points of a discrete c?-separating slab;
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this property follows from the ^-connectivity of the mesh.

Observe that up to this point, we have converted a discrete Plateau problem

(P4) instance to a maximum flow instance on an undirected, node-weighted net

work. Thus, our final step is to construct an equivalent arc-capacitated maximum

flow instance (Figure 6.8), again following Section 6.2.2. A formal summary of

our algorithm, which we call the Disc_Plateau algorithm, is given in Figure 6.19.

Algorithm: Disc-Plateau

Input: contour F*

node weight function w :cj//(r*) —i- Ji"''
thickness d> 0

grid size g
Output: A minimal rf-separating slab R* with boundary contour T*
Create a d-connected mesh network G of grid size g over cj//(r*)
Set node capacities of G according to weight function w
Set arc capacities of G to oo

Set all boundary node capacities to oo
Transform node-weighted network G into arc-capacitated network rj
Create source node s and sink node t in rj

Connect s to boundary nodes {x,y,z) € cyl{T*) 3 z < T*{x,y)
Connect t to boundary nodes {x,y,z) € cj//(r*) 3 z > r*(x,2/)
Set capacities of aU arcs adjacent to s or t to oo
Compute a maximum s-t flow in t]
Output all nodes incident to arcs in a minimum cut of 7?

Figure 6.19: Algorithm Disc_Plateau finds a (^-separating slab of minimum
cost in an arbitrarily weighted discrete space, i.e., an optimal solution to
problem (P4).

We conclude this section with the observation that the max-flow min-cut

theorem [FF61] and the existence of polynomial-time algorithms for maximum

flow together imply the following:
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Theorem 6.4 Algorithm Disc.Plateau outputs an optimal solution to problem

(P4) in time polynomial in the size of the gridded space S.

In verifying the practicality of the Disc_Plateau methodology, we again used

our existing implementation of the maximum flow algorithm of Dinic [GG88];

this code has C>(|iVp) time complexity, where \N\ is the number of nodes in the

discrete mesh representation of the space. More efficient flow algorithms may be

used:

Theorem 6.5 For a given prescribed slab thickness d, the Disc-Plateau algorithm

solves problem (P4) in 0(|A^P) time, where |7V1 is the number of nodes in the

gridded representation of the space.

Proof: The degree of each node in the mesh is bounded by so that |A| =

0{d^ • The network flow algorithm of [AOT87] operates within time 0(|A| •

|7V| •log(-'̂ )). Assuming that dis a. constant, the overall time complexity of our

method is therefore 0(|iV|^). •

Our current implementation integrates ANSI C code to transform an arbitrary

Plateau problem instance satisfying conditions (i) and (ii) of the (P2) formula

tion into a maximum-flow instance; we again use the Fortran-77 Dinic code of

[GG88] to compute the flow and invoke Mathematica [Wol91] to draw the re

sulting surface. We have tested our implementation on several classes of problem

instances, involving underlying spaces that arebothuniformly weighted and non-

uniformly weighted. Figure 6.20 shows Disc_Plateau output for a small example

with boundary contour consisting of four diagonals on the faces of a cube, uni

form node weights, and d = 2; the "saddle" shown is optimal for the resolution

used.
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Figure 6.20: Minimal surface computation in a uniformly weighted space.

Based on our experimental results, we conclude that our approach consti

tutes a viable new method for solving the discrete Plateau problem in arbitrarily

weighted spaces. Although Dinic's algorithm is certainly not the ideal maximum

flow algorithm for a mesh topology, typical running times used to generate and

solve our test cases range from only several seconds (for the example of Fig

ure 6.20) to an hour on a low-end Sun-4 workstation with modest RAM/swap

space. The observed runtimes show clear dependencies on the mesh resolution,

the minimum slab thickness d, and the memory/swap configuration available.
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6.5 Remarks and Extensions

We have developed a polynomial time algorithm which gives optimal solutions to

the prescribed-width path problem in a discretized environment. Our method is

based on the duality between connecting paths and separating sets, and relies on

a maximum-flow computation to find a minimum-cost path of prescribed width

in an arbitrarily weighted region. The accuracy of the solution with respect to

the continuous version of the problem depends on the gridsize, which is intrinsic

to the input. We haveextended our method to three dimensions, where it yieldsa

polynomial timealgorithm which gives optimal solutions to a well-studied class of

instances of the discrete Plateau problem, by finding a minimum-cost <i-separating

slab in an arbitrarily weighted space.

Chief among the future research goals is improvement of the time complexity

of the network flow computation; substantialimprovement is likely since the mesh

is a highly regular, symmetric network that admits a concise representation. Ad

ditional research might also address more general prescribed-width routing issues,

such as (i) incorporation of kinematic and dynamic considerations in robotics ap

plications, (ii) use of hierarchical approaches as a heuristic speedup, and (iii)

addressing the case where the endpoints of the path are not on the boundary of

the region, and (iv) extension of the prescribed-width constraint to multi-point

(tree) interconnections. One may also examine minimal surface computations us

ing hierarchical approaches as a heuristic speedup; as with the lower-dimensional

formulation, addressing the case where the contour does not necessarily lie on the

boundary of the space is of interest. Finally, we believe that our methodology

can address a larger class of Plateau instances by deomposing a spanning surface

into patches which may then be individually optimized.
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